工控网首页
>

应用设计

>

重庆市巫山县污水处理厂工程自动控制系统

重庆市巫山县污水处理厂工程自动控制系统

2003/11/24 0:00:00
1 引言   重庆市巫山县位于四川盆地东部,长江三峡库区腹心地带,东北与湖北省神农架国家自然保护区毗邻,西北与重庆市区连壤相依。巫山县城就坐落在长江北岸巫峡西口、大宁河与长江汇合处,其污水排放水体为长江,故建立完善的污水处理系统,是维护长江水系的水质清澈的重要保障。   而污水处理厂的各处理设备分布分散,每个工艺区段相对独立;I/O点中以离散量为主,模拟量为辅;由于这些特点,使其更适宜以PLC为主要控制器的集散式控制方案。本文介绍的就是这样的一套以PLC为主组成的顺控系统。 2 污水处理工艺流程简介   由重庆地区的污水水质状况,及国家对三峡地区污水排放水系的严格控制,结合巫山县的地理条件,经多方论证与方案比较,决定采用Orbal(奥贝尔)氧化沟并辅助化学除磷装置的污水处理工艺。   该厂污水处理过程主要分为机械处理、生化处理、污泥处理三个阶段。现将其工艺流程介绍如下(见图1所示)。
  机械处理段——由进水泵提升、粗细格栅拦截漂浮物和悬浮物,再经钟式沉砂池及计量槽进行沉砂处理后,转入生化处理。 Orbal(奥贝尔)氧化沟由三个相对独立的同心圆(椭圆)沟道组成,污水通过淹没式进入口由外沟道进入,然后依次进入中间沟道和内沟道,最后由内沟流出,至二沉池(二沉池来取代中心岛)。进入氧化沟的污水在旋转曝气圆盘的作用下,混合液得到有效的混合、曝气和推流,悬浮有机物在沟内可获得较彻底地降解,并较高程度地实现“同时硝化反硝化”的效果。为了适应出水的高要求,在二沉池的进水处投加铝盐,在二沉池沉淀的同时进行辅助化学除磷,再经过接触池加氯消毒处理,最终经排水管排出。   Orbal(奥贝尔)氧化沟具有延时曝气的特点,悬浮有机物在沟内可获得较彻底地降解,污泥在沟内达到相对好氧稳定,剩余污泥量少,无需厌氧消化,可直接进入污泥浓缩脱水处理过程。二沉池排出的污泥,一部分经回流污泥泵返回外沟,剩余部分污泥经剩余污泥泵送至脱水机房的污泥调节池,再经投泥泵送入带式污泥浓缩脱水系统的处理,最终泥饼装车送至厂外。   通过以上工艺过程的描述,我们可以知道污水处理过程是按一定流程和顺序循环进行的,有其固有的顺序性和周期性。 3 控制系统的设计   控制系统设计目的是对污水处理过程的机械处理阶段、生化处理阶段、污泥处理阶段进行顺序控制,及在故障情况下的紧急停车等一系列处理过程进行全自动PLC控制。 3.1 机械处理段的自动控制系统: (1)每台格栅前后安装了一台液位差计,PLC根据液位计检测到的水位差值和时间设定,自动控制格栅除污机的运行;当水位差值超过设定值或时间设定值时,自动控制格栅和螺旋输送机按照预先编制的程序运行。 (2)污水提升泵房是全厂的咽喉,一旦出现故障,全厂就得停产,泵的控制至关重要。设在前池的液位计将检测到的水位信号送到控制运算器,PLC根据检测值与设定值的差值来自动控制水泵的运行。当水位升高到预定的水位值时,自动控制水泵按照预先编制的程序依此逐台启动;当水位减低到预定的水位值时,自动控制水泵按预先编制的程序依此逐台关闭。同时累积水泵运行时间,自动轮换水泵,保证水泵累计运行时间均等,并处于在最佳运行状态。当水位降到设定下限水位时,干运转保护起动,自动控制水泵全部停止运行,以保证水泵的安全。 (3)钟式沉砂池由一套变速及调整系统机构控制箱来就地控制,其转盘的转速和高度均可根据除砂效率和有机物分离效率的要求,哪个更高而定来进行调整。另外进出水口及池中水位可视需要去除的砂粒的粒径而定。沉砂池系统各设备的运行状态及故障信号送至中控室去显示监控。 (4)为了提高污水处理厂的工作效率和运转管理水平,正确掌握处理污水量及动力消耗,反映运行成本,在沉砂池后设置了巴式计量槽。每个计量槽安装超声波流量计一台、温度计和PH计一台,将信息输入计算机,对全厂污水进行连续监测。 3.2 生化处理段的自动控制系统:   Orbal(奥贝尔)氧化沟的运行控制:我们在外沟、中沟、内沟各设置1台溶解氧测量仪表,将仪表检测到的溶氧仪测量值送至现场PLC控制子站,PLC根据氧化沟中的溶解氧含量,按照预先已编制好的程序(为保证氧化沟内流速均匀;所预先编制的动作顺序),自动控制转碟的运转台数和运行时间;以满足外、中、内沟的溶氧值稳定在生化反应的设定值。在外沟,因所需溶氧值较低,溶氧仪将不能工作在其测量范围的精确量程内,检测值的误差较大,为此在外沟另设有一台氧化-还原电位计,用来校正被监控参数的测量。同时,还可调节氧化沟的出水堰板,以改变转碟浸没水深来增减空气曝气量,既保证了氧化沟生物处理过程的稳定又节约了能源。   根据以往的Orbal(奥贝尔)氧化沟的运行情况,在编制氧化沟的运行控制程序时,还需注意三点:一,考虑水中溶解氧的变化速率,避免控制系统的不稳定,需设置溶解氧的控制死区;二,为避免转碟的控制不稳定,在程序中设置转碟的时间死区,在此时间内转碟不可启停;三,为了平衡转碟的工作时间,应开转碟和应停转碟要符合先开先停、先停先开的原则,目的是减少转碟电机的损耗,达到节能的要求。   另外,在中沟我们还设置了混合液浓度检测仪表,在外沟设置了检测液位的超声波液位计。以加强对氧化沟生物反应情况的监控。 3.3 污泥沉淀浓缩处理段的自动控制系统: (1)在污泥浓缩加药系统,我们根据容积比设置了一套自动控制配药系统(见图2)。
  加药系统按照预先编制的程序运行,定时加药、配水及搅拌。首先进行药液的配置控制,由PLC根据所确定的容积比去自动控制除磷药剂原液与稀释水的投加量,配制成所需浓度的除磷药剂;在配药罐上还设有超声波液位计,液位信号送至PLC,当药液量和水量比例满足配比要求,配药过程结束后,PLC自动控制打开配药罐出口的电动球阀,进入加药阶段。除磷药剂的投加量,由PLC控制计量泵去完成。 (2)脱水机房设带式脱水机及全部附属装置。负责脱水、加药、进泥、出泥、反冲洗等设备的连锁控制,整套脱水系统按照预先编制的程序运行,PLC负责对各设备的运行情况进行监控及连锁保护。 4 控制系统的实现 4.1 系统硬件构成   PLC控制系统由工艺过程监控系统、通讯系统、可编程序控制器及检测仪表组成。采用分布式计算机集散控制系统,实现对全厂的工艺流程进行分散控制、集中管理。控制系统采用了过程监控级(即中央监控站-主站)和现场控制级(即两个智能子站—PLC站)的两层结构,划分为中央控制室、第一分控室、第二分控室三个区域。   过程监控级设在中央控制室(主站)内,由两台工控机、两台打印机和通讯卡等组成工程师站、操作员站及数据通讯系统。操作员站 是操作员用以完成对整个污水处理厂进行实时监控功能的岗位,负责对全厂的工况进行监控和管理调度,可对每个智能子站中的设备进行 操作,但在同一时间内只允许一个站操作同一个设备;工程师站可以实现在线控制系统的编程及各种参数的设定与修改等任务;数据通讯系统则用来提供或接受工业过程的实时信息及与上级管理站的通讯等任务。   现场控制级为两个智能子站,分别设置在两个分控室内,由PLC控制器、I/O处理单元及现场检测仪表组成,用以完成数据采集、处理等功能,负责对污水处理厂各个反应处理阶段进行就地分散控制,分站的操作权限由主站来分配。两个智能子站和主站通过现场通讯总 线相连(PLC控制系统的结构配置如图3所示)。   PLC选用的是施耐德公司的PREMIUM可编程序控制器,它具有模拟量、开关量的采集处理和计算功能以及逻辑控制、计时比较等顺序控制功能,并且具有集成的批处理功能和高速数据通讯网,以满足连锁控制的快速响应的要求。   根据本系统的要求,我们选用以下设备(详见表1) :
4.2系统软件 PREMIUM PLC控制系统软件为两部分。 4.2.1监控级应用软件   监控级应用软件为Monitor Pro监控软件。具有实时数据库、趋势和实时图表、模拟画面、报警管理、数据库巡航等功能,监控软件采用全汉化界面,设计有工艺流程图、各工艺单元流程图、趋势图、报表、报警、各种电量参数图、各种设备的操作和参数设定画面。操作员通过菜单命令或鼠标点击,可浏览所有工艺过程画面,显示当前状态并按顺序记录、输出;能完成各类数据的记录、存盘、报警,处理打印各种生产报表、曲线图和站图表(显示出泵/阀的状态,提供最重要的检测值和报警),以及对各阶段的反应时间和给定值的调整等。同时,全厂所有可操作的设备均可由操作员在工作站上通过鼠标和权限进行遥控操作,完成生产指挥调度过程。   由于污水处理厂自控系统需要经过长期运行,获得经验数据,然后重新调整控制系统。所以各种可能需要调整的参数均可在上位机进行设定,如回流污泥泵、剩余污泥泵的工作时间,溶解氧的控制死区,转碟工作的时间死区等。这样,操作人员可以随时根据现场情况调整控制参数,优化工艺的运行效果。 4.2.2编程工具软件:   PLC编程工具为PL7 Pro,该软件可在WINDOWS系列操作系统上运行,采用图形编程界面,具有梯形图(LD)和功能块图(DFB)指令表(IL)及结构化文本语言等多种编程语言可供编程人员编程时使用。可对I/O设备进行 组态和参数化,能对任何连接到控制总线的节点进行测试和启动,可在线修改系统中任一点 的用户程序。并包括先进的系统诊断能力、过程诊断工具和远程维护等。   污水处理厂控制程序流程图见图4所示。
投诉建议

提交

查看更多评论