工控网首页
>

应用设计

>

触摸屏技术原理分析

触摸屏技术原理分析

2011/8/2 15:59:37

       包含5个基本种类的触摸屏的大量生产和电脑在国民生活中的深入直接刺激着触摸屏销售额的增长,如今触摸屏已经渗透到了几乎每一个可以想象得到的应用领域,系统设计师们越来越迫切想知道究竟哪一类触摸屏最适合他们的系统配置和应用。

       触摸屏的这5个基本种类是:电阻技术触摸屏、电容技术触摸屏,表面声波技术触摸屏、红外线扫描技术触摸屏、矢量压力传感技术触摸屏。这是从技术原理上对触摸屏的分类,矢量压力传感技术触摸屏己退出历史舞台;电容触摸屏曾在国内风行过一段时间,但由于技术原理上难以解决漂移的问题,在国内也曾遇到了销售困难。每一类触摸屏都有其各自的优缺点,而用户也知道不可能所有的应用场合都是某一类触摸屏最适合。要想挑选最适合的,关键就要了解每一类触摸屏技术的工作原理和特点:

       触摸屏技术原理介绍

       触摸屏是最方便、简单、自然的输入手段,完全不懂电脑的人可以上来就操作电脑。用户看着显示内容,想选什么就简单地用手触摸一下。通过触漠屏,人们可以尽情的游畅于您的应用软件,查询他们感兴趣的信息。

       既然触摸屏是最适合信息查询的输入设备,各发达国家都积极的进行者触摸屏的研制开发,犹如PC从286、386发展到奔腾机一样,触摸屏也从低档向高档发展,从红外线式、电阻式走到电容感应式,现在发展到了表面声波触摸屏和五线电阻触摸屏。性能越来越可靠,技术越来越先进,如美国的EloTouch表面声波触摸屏,安装的是一块没有任何贴膜覆层的纯玻璃,撇是从清晰度还是从耐用程度上都昭示着触摸屏成熟产品时代的到来。

       本章主要对目前国内市场上的表面声波触摸屏、电阻触摸屏、电容感应触摸屏、红外线触摸屏的技术逐一作详尽的介绍。尽管在95年初就传来了海外著名TPIS红外触摸屏停产的消息,但是在短时间内,国内各路兵马还将以价位均衡实力,在国内的市场上并存一段时期

       1.表面声波触摸屏

       本文以美国E1o TouchSystems公司的E1oTouch表面声波触摸屏为例。

       表面声波,超声波的一种,在介质(例如玻璃或金属等刚性材料)表面进行浅层传播的机械能量波。表面声波性能稳定、易于分析,并且在横波传递过程中具有非常尖锐的频率特性,近年来在无损探伤、造影和滤波器方向上发展非常成熟。

       表面声波触摸屏的触摸屏部分可以是一块平面、球面或是柱面的玻璃平板,安装在CRT、LED、 LCD或是等离子显示器屏幕的前面。这块玻璃平板只是一块纯粹的强化玻璃,区别于别类触摸屏技术是没有任何贴膜和覆盖层。

       玻璃屏的左上角和右下角各固定了竖直和水平方向的超声波发射换能器,右上角则固定了两个相应的超声波接收换能器。玻璃屏的四个周边则刻有45度角由疏到密间隔非常精密的反射条纹。

       以Y轴为例,发射换能器把由控制器产生的5MHz的电信号转换为超声波能量发出。换能器基座的设计使得它具有较狭窄的方向角向左传播声表面胶能量,在传递过程中,又被底边的45度反射条纹向上反射成屏幕表面竖直方向的均匀面传播,然后又被上边的反射条纹向右聚成线传播至Y轴接收换能器,并最终转为电信号回传给控制器。

       在没有触摸的时候,接收信号的波形与参照波形完全一样。当手指触摸屏幕时, 手指吸收了一部分声波能量,而控制器则侦测到接收信号在某一时刻上的衰减,由此可计算出触摸点在Y轴上的位置,同样的原理可以得到触摸点在X轴的位置。除了一般触摸屏都能响应的X、Y坐标外,表面声波触摸屏还响应其独有的第三轴Z轴坐标,也就是能感知用户触摸压力大小值。其原理是由接收信号衰减处的衰减量计算得到。三轴一旦确定, 控制器就把他们传给主机。因为表面卢波技术非常稳定,而表面声波触摸屏的控制器靠测量衰减时刻在时间轴上的位置来计算触摸位置,所以表面声波触摸屏非常稳定,精度也非常高,目前表面声波技术触摸屏的精度通常R4096×4096。

       表面声波触摸屏的优势主要有:寿命最长(美国权威的电子工程师杂志的报告是:同一位置触摸5干万次无故障),属于半永久性的产品,极好的防刮性,透光率(>92%)和清晰度最高,保持清晰透亮的图像质量,没有色彩失真,这些优点来源于它的触摸屏是没有任何贴膜和覆层的纯玻璃,并且不象有覆层玻璃的触摸屏在边角遭受压力时内部应力不可预测的可能在某处集中,因此,纯玻璃的触摸屏安装风险小;此外,表面声波触摸屏技术绝对没有漂移,安装后无须再进行校准,直接采用迪卡尔直角坐标系,数据转换无失真。

       前面提到,表面声波触摸屏还具有第三轴Z轴,也就是压力轴响应,这是因为用户触摸屏幕的力量越大,接收信号波形上的衰减缺口也就越宽越深。在所有触摸屏中只有表面声波触摸屏具有能感知触摸压力这个性能,有了这个功能,每个触摸点就不仅仅是有触摸和无触摸的两个数字开关状态,而是成为能感知力的一个模拟量值的开关了。这个功能非常有用,比如在多媒体信息查询软件中,一个按钮就能控制动画或者影像的括放速度。

       表面声波触摸屏的上述特性和其它类触摸屏的比较参见表1,可以比较看出它较大的优越性,尤其是能承受各种粗暴的触摸最适合面对公共场所的触摸屏应用,公共场所恨有破坏性而又不能派专人看护,因此,一定要选择耐用的触摸屏。

       2.电阻技术触摸屏:

       电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层叫ITo的透明导电层,上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层导电层(ITO或镍金),在两层导电层之间有许多细小(小于于分之一英寸)的透明隔离点把它们隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了一个接触,控制器侦测到这个接通并计算出X、Y轴的位置,这就是所有电阻技术触摸屏共同的最基本原理。

       电阻触摸屏的结构及模拟量电阻屏的原理

       电阻触摸屏的两层ITOI作面必须是完整的,在每个工作面的两条边线上各涂一条银胶,一端加5V电压,一端加0V,就能在工作面的一个方向上形成均匀连续的平行电压分布。在侦测到有触摸后,立刻A/D转换测量接触点的模拟量电压值,根据它示IJ5V陶比例公式就能计算出触摸点在这个方向上的位置。

       在此有必要提一下两种透明的导电涂层村抖:①ITO,氧化钢,弱导电体,特性是当厚度降到1800个埃(埃=10米)以下时会突然变得透明,透光事为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。但有遗憾是ITO在这个厚度下非常脆,容易折断产生裂纹。 ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和1容技术触摸屏的工作面就是ITO涂层。②镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性极好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是成本较为高昂,镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电性太好,不直作精密电阻测量,而且金属不易做到厚度非常均匀。

       第一代四绣碴肋沏啪两层ITOI作面工作时都加上5V到0V的均匀电压分布场:一个工作面加竖直方向的,一个工作面加水平方向的。引线至控制8总共需要四根电缆。因为四线电阻触摸屏靠外的那层塑胶及ITO涂层被经常触动,一段时间后外层薄薄的ITo涂层就会有了细小的裂纹,显然,导电工作面一旦有了裂纹,电流就会绕之而过,工作而上的电压场分布也就不可能再均匀,这样,在裂纹附近触摸屏漂移严重,裂纹增多后,触摸屏有些区域可能就再也触摸不到了。

       四线电阻触摸屏的基层大多数是有机玻璃,不仅存在透光率低、风化、老化的问题,并且存在安装风险,这是因为有机玻璃刚性差,安装时不能捏边上的银胶,以免薄薄的ITO和相对厚实的银胶脱裂,不能用力压或拉触摸屏,以免神断ITO层。有些四线电阻触摸屏安装后显得不太平整就是因为这个原因。

       ITO是无机物,有机玻璃是有机物,有机物和无机物是不能良好结合的,时间一长就容易剥落。如果能够生产出曲面的玻璃板,玻璃是无机物,能和ITO非常好的结合为导电玻璃,那电阻触摸屏的寿命不是能够大大延长吗?

       第二代五线电阻技术触摸屏的基层使用的就是这种导电玻璃,不仅如此,五线电阻技术把两个方向的电压场通过精密电阻网络都加在玻璃的导电工作面上,我们可以简单的理解为两个方向的电压场分时加在同一工作面上,而外层镍金导电层只仅仅用来当作纯导体,有触摸后靠既检测内层ITO接触点电压又检测导通电流的方法测得触摸点的位置。五线电阻触摸屏内层ITO需四条引线,外层只作导体仅仅一条,至控制器总共需要5根电缆。因为五线电阻屏的外层镍金导电层不仅延展性好,而且只作导体,只要它不断成两半,就仍能继续完成作为导体的使命,而身负重任的内层1TO直接与基层玻璃结合为一体成为导电玻璃,导电玻璃自然没有了有机玻璃作基层的种种弊端,因此,五线电阻屏的使用寿命和透光率与四线电阻屏相比有了一个飞跃:五线电阻屏的触摸寿命是3千5百万次,四线电阻屏则是小于1百万次,且五线电阻触摸屏没有安装风险,同时五线电阻屏的ITO层能做得更薄,因此透光率和清晰度更高,几乎没有色彩失真。

       不管是四线电阻触摸屏还是五线电阻触摸屏,它们都是一种对外界完全隔离的工作环境,不怕灰尘、水汽和油污,它可以用任何物体来触摸,可以用来写字画画,比较适合工业控制领域及办公室内有限人的使用。电阻触摸屏共同的缺点是因为复合薄膜的外层采用塑胶材料,不知道的人太用力或使用锐器触摸可能划伤整个触摸屏而导致报废。不过,在限度之内,划伤只会伤及外导电层,外导电层的划伤对于五线电阻触摸屏来说没有关系,而对四线电阻触摸屏来说是致命的。

       4.电容技术的触摸屏:

       电容技术的触摸屏是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层ITO,最外层是只有0.0015毫米厚的矽土玻璃保护层,夹层ITO涂层作为工作面,四个角上引出四个电极,内层ITO为屏蔽层以保证良好的工作环境。

       当用户触摸电容屏时,由于人体电场,用户手指头和工作面形成一个耦合电容,因为工作面上接有高频信号,于是手指头吸收走一个很小的电流。这个电流分从触摸屏四个角上的电极中流出,并且理论上流经这四个电极的电流与手指到四角的距离成比例,控制器通过对这四个电流比例的精密计算,得出触摸点的位置。

       电容触摸屏的透光率和清晰度优于四线电阻屏,当然还不能和表面声波屏和五线电阻屏相比,参见表1和图5,电容屏反光严重,而且,电容技术的四层复合触摸屏对各波长光的透光率不均匀,存在色彩失真的问题,由于光线在各层间的反射,还造成图像字符的模糊。

       电容屏在原理上把人体当作一个电容器元件的一个电极使用,当有导体靠近与夹层ITO工作面之间耦合出足够量容值的电容时,流走的电流就足够引起电容屏的误动作。我们知道,电容值虽然与极间距离成反比,却与相对面积成正比,并且还与介质的的绝缘系数有关。因此,当较大面积的手掌或手持的导体物靠近电容屏而不是触摸时就能引起电容屏的误动作,在潮湿的天气,这种情况尤为严重,手扶住显示器、手掌靠近显示器7厘米以内或身体靠近显示器15厘米以内就能引起电容屏的误动作。

       电容屏的另一个缺点用戴手套的手或手持不导电的物体触摸时没有反应,这是因为增加了更为绝缘的介质。

       电容屏更主要的缺点是漂移:当环境温度、湿度改变时,环境电场发生改变时,都会引起电容屏的漂移,造成不准确。例如:开机后显示器温度上升回造成漂移:用户触摸屏幕的同时另一只手或身体一侧靠近显示器会漂移;70多公斤的小伙子校正的电容屏40公斤的小姐可能触不动(两个小姐握起手来就行);电容触摸屏附近较大的物体搬移后回漂移,你触摸时如果有人围过来观看也会引起漂移;电容屏的漂移原因属于技术上的先天不足,环境电势面(包括用户的身体)虽然与电容触摸屏离得较远,却比手指头面积大的多,他们直接影响了触摸位置的测定。此外,理论上许多应该线性的关系实际上却是非线性,如:体重不同或者手指湿润程度不同的人吸走的总电流量是不同的,而总电流量的变化和四个分电流量的变化是非线性的关系,电容触摸屏采用的这种四个角的自定义极坐标系还没有坐标上的原点,漂移后控制器不能察觉和恢复,而且,4个A/D完成后,由四个分流量的值到触摸点在直角坐标系上的X、Y坐标值的计算过程复杂。由于没有原点,电容屏的漂移是累积的,在工作现场也经常需要校准。

       在美国的赌场中曾发生过这样的事故:当时的宾果机安装的都是电容触摸屏,有一位客人财运很好引来了许多旁观的看客,却没想到此时由于环境电场的严重改变,电容触摸屏失效了�此家赌场后来全改为用表面声波触摸屏挽回了声誉,但从这个事情上可以反映出电容触摸屏技术原理的先天不足。

       电容触摸屏最外面的矽土保护玻璃防刮擦性很好,但是怕指甲或硬物的敲击,敲出一个小洞就会伤及夹层ITO,不管是伤及夹层ITO还是安装运输过程中伤及内表面ITO层,电容屏就不能正常工作了。

       5、红外触摸屏是利用X、Y方向上密布的红外线矩阵来检测并定位用户的触摸。通常红外触摸屏在显示器的前面安装一个外框,靠藏在外框中的电路板在屏幕四边排布红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。用户在触摸屏幕时,手指就会挡住经过该位置的横竖两条红外线,因而可以判断出触摸点在屏幕的位置,

       安装红外触摸屏的方法非常简单,只要用胶或双面胶将这个框架固定在显示器前面即可。大多数红外触摸屏的控制器直接设计在藏在框架中的电路板上,也有红外触摸屏把控制器设计在单独的小盒中。控制器通过键盘接口或者串行口直接与主机通信,走键盘接口的红外触摸屏用户甚至可以直接读取键盘口发来的触摸屏数据而无需任何驱动程序。

       红外触摸屏的分辨率由框架中的红外对营数目决定,因此分辨率较低,市场上主要为32x32、40X32。

       原来红外触摸屏的主要缺点是因依靠红外光线工作而对光照环境因素比较敏感,在光照变化较大时会误判甚至死机。国内第二代抗光干扰型的红外触摸屏推出后,第二代红外触摸屏已经较好的克服了这个弱点,但红外触摸屏毕竟是通过红外光线工作,只能承受有限的光干扰,因此在使用环境上有一定的限制。

       红外触摸屏另外一个主要缺点是框架:它不美观豪华,破坏显示器原来的外形;它要求框架内侧是红外滤色片;此外,这个框架不可能结实,根据返修情况看,红外触摸屏的框架最容易遭到破坏。

审核编辑(
王静
)
投诉建议

提交

查看更多评论
其他资讯

查看更多

助力企业恢复“战斗状态”:MyMRO我的万物集·固安捷升级开工场景方案

车规MOSFET技术确保功率开关管的可靠性和强电流处理能力

未来十年, 化工企业应如何提高资源效率及减少运营中的碳足迹?

2023年制造业“开门红”,抢滩大湾区市场锁定DMP工博会

2023钢铁展洽会4月全新起航 将在日照触发更多商机