工控网首页
>

应用设计

>

印染废水脱色的研究新进展

印染废水脱色的研究新进展

2006/9/20 10:56:00
1.废水来源特点 印染废水是指印染加工过程中所有工序所排放的废水混合而成的混合废水。 主要包括:预处理阶段排放的退浆、煮炼、漂白、丝光废水;染色阶段排放的染色废水;印花阶段排放的印花废水和皂洗废水;整理阶段排放的整理废水。印染废水成分复杂,主要是以芳烃和杂环化合物为母体,并带有显色基团(如:-N=N-、-N=O)及极性基团(如:- SO3Na、-OH、-NH2)。染料分子中含较多能与水分子形成氢键的-SO3H、-COOH、-OH 等亲水基团,如活性染料和中性染料等,染料分子就能全溶于废水中;不含或少含-SO3H、-COOH、-OH等亲水基团的染料分子,以疏水悬浮微粒形式存在于废水中;含少量亲水基团但分子量很大或完全不含亲水基团的染料分子,在水中常以胶体形式存在。印染废水中还常带有一些染色助剂。 由于染料生产品种多,并朝着抗光解、抗氧化、抗生物氧化方向发展,从而使染料废水处理难度加大。染料废水处理难点:一是COD高,而BOD/COD值小,可生化性差;二是色度高,而成分复杂。三是水质水量不稳定,排放具有间歇性。印染废水的处理目标一般是COD的去除与脱色,但脱色问题难度更大。 2. 染料分类及发色机理 2.1 染料分类 各类染料着色率各不相同, 其中阳离子酸性染料和酸性媒介染料着色率高, 可达90%~100% , 硫化染料着色率最低, 约50% , 其它染料介于此间。这样, 使用着色率低的染料进入废水的量大, 而着色率高的染料进入废水的量就小。 2.1.1 直接染料 直接染料一般属双偶氮、三偶氮或二苯乙烯型结构,分子中亲水基团含量较高,水溶性好,溶解度大,在水溶液中直接染料分子一般呈直线形展开,几个芳环位于同一个平面内。染料分子可通过基团之间的氢键相互缔合,有较大的聚集倾向,在水溶液中以胶体形态存在,较易被化学絮凝法去除。 2.1.2 活性染料 活性染料有单偶氮型、蒽醌型、酞菁型等。活性染料在水中的分散状态随其结构而变。分子量大或芳环呈平面者易发生缔合,形成大分子基团而易被除去; 分子量小且芳环不在一个平面内,多以接近真溶液的状态存在,絮凝去除率下降。 2.1.3 还原染料 还原染料分子结构的基本骨架是分子量较大的多环芳香族化合物,疏水芳香环多而亲水基团少,它与分散染料均属于非离子型的疏水性染料,在水中溶解度极微,主要以疏水性的悬浮微粒存在,稳定性较差,絮凝剂加入后易发生凝聚而被除去。 2.1.4 弱酸性染料 弱酸性染料一般为单偶氮和双偶氮类,溶解度中等,常温下在水溶液中以接近胶体的状态存在,易被絮凝除去。 2.1.5 中性染料 中性染料常见的为单偶氮2∶1 型金属络合染料,中心络合离子为Co2 + 、Cr2 + 等。由于中心存在金属络离子,导致几个苯环不在同一个平面内,分子间较难缔合,染料在水中以接近真溶液的状态存在,即使絮凝剂投加量较大,脱色率也很低[1]。 李硕文[2]的研究表明,直接染料和还原、分散、硫化染料易通过化学絮凝去除,脱色率高;活性染料絮凝去除效果随分子量而异;分子量大的易去除;强酸性染料脱色率低,弱酸性和中性染料脱色率高;阳离子染料用絮凝剂难以去除,脱色率低。 2.2 发色机理 染料的颜色取决于其分子结构。按Wiff发色基团学说, 染料分子的发色体中不饱和共轭链( 如- C= C- 、- N = N - 、- N = O)的一端与含有供电子基(如- OH、- NH2)或吸收电子基(如- NO2、>C = O ) 的基团相连, 另一端与电性相反的基团相连。化合物分子吸收了一定波长的光量子的能量后, 发生极化并产生偶极矩, 使价电子在不同能级间跃迁而形成不同的颜色。一般来说, 染料分子结构中共轭链越长, 颜色越深; 苯环增加, 颜色加深; 分子量增加, 特别是共轭双键数增加,颜色加深。[3] 3. 脱色处理方法 3.1 物理方法 3.1.1 吸附法 吸附法是利用多孔性的固体物质,使废水中的一种或多种物质被吸附在固体表面而去除的方法。吸附脱色技术是依靠吸附剂的吸附作用来脱除染料分子的。吸附按其作用力可分为物理吸附、化学吸附和离子交换吸附三种。目前用于吸附脱色的吸附剂主要是靠物理吸附, 但离子交换纤维、改性膨润土等也有化学吸附作用。 常用的吸附剂包括可再生吸附剂如活性炭、离子交换纤维等和不可再生吸附剂如各种天然矿物(膨润土、硅藻土)、工业废料(煤渣、粉煤灰) 及天然废料(木炭、锯屑) 等。传统的吸附剂是活性碳,活性炭具有较高的比表面积(500- 600 m2/g),它只对阳离子染料、直接染料、酸性染料、活性染料等水溶性染料具有较好的吸附性能。活性炭去除水中溶解性有机物(分子量不超过400)非常有效,但它不能去除水中的胶体疏水性染料。若废水BOD5> 500mg/L,则采用吸附法是不经济的。膨润土作为水处理中的吸附剂和絮凝剂,已被广泛用于印染废水脱色领域,近年来制成多种复合膨润土、VS型纤维和聚苯乙烯基阳离子交换纤维等,具有物理吸附和离子交换功能,且比表面大、离子交换速度快,易再生,对难处理的阳离子染料废水有很好的脱色效果,有些改性的膨润土的脱色效果甚至高于活性炭[4];某些集吸附与絮凝性能为一体的吸附剂如硅藻土复合净水剂也已开发;用电厂粉煤灰制成具有絮凝性能的改性粉煤灰,对疏水性和亲水性染料废水均具有很高的脱色率;另外工业废料(如煤渣、粉煤灰等)、天然废料(如木炭、木屑等)、植物秸秆(如玉米棒等)均对印染废水具有一定的吸附作用。 吸附法尤其适合难生化降解的纺织印染废水脱色处理,印染废水的吸附脱色技术是一项非常有效而又比较经济的方法。活性炭吸附脱色技术不适合印染废水一级处理,只能用于深度脱色处理,活性炭处理成本高,再生困难,所以活性炭的再生技术是正在研究的课题,其中生物再生是研究的重点方向。煤、炉渣吸附剂,原料来源广,成本低,但在处理印染废水之后存在二次污染,所以只适合与生化法或砂过滤等方法联合使用。离子交换树脂对水溶性染料离子吸附特别有效,离子交换吸附剂的开发研制是今后的主要发展方向之一。廉价、高效、因地制宜新型吸附材料的开发是一项很有前途的技术。吸附法与其它处理方法的优化组合处理印染废水,脱色效果更佳。[5] 综上所述,吸附脱色的发展方向体现在两个方面: ①根据吸附机制开发、寻找新的吸附剂; ②对现有吸附剂的改性与活化, 以提高脱色效果和再生能力。 3.1.2 超滤法脱色 超滤是利用一定的流体压力推动力和孔径在20~200üA 的半透膜实现高分子和低分子的分离。超滤过程的本质是一种筛滤过程,膜表面的孔隙大小是主要的控制因素。该法的优点是不会产生副作用,可以使水循环使用。早在70 年代初期, 膜分离技术就尝试用来处理印染废水。目前, 该方法可用于去除各种染料和添加剂。但由于分离染料混合物的困难, 并未达到完美的程度。 在这种技术中,半透膜的性质起着决定性的作用。就材料而言,膜有动态膜,纤维素类膜,聚砜超滤膜,荷电超滤膜或疏松反渗透膜。[6] (1)动态膜从处理效果和经济上讲,ZrO-PAA 动态膜是可行的。但能耗较大,其渗透水及化学物质的再利用率可达88% 到96%。 (2) 纤维素类膜。CA 膜的选择性随膜表面与各种染料互变异构体相互作用而发生变化,但膜材料本身在耐pH、耐温等方面仍然有所不足。纤维素类膜在耐pH值、耐压、耐温度等方面优于CA ,用纤维素超滤膜反渗透处理染色废液, 染料去除率97% 以上可实现水的循环使用,但反渗透所需的高压操作仍是它的不足。 (3) 聚砜超滤膜由于其良好的物理化学稳定性,有较大的应用前景。使用聚砜超滤膜代替纤维素膜可实现高温操作, 回收染料减轻污染, 但仍未达到国家排放的标准。 (4) 荷电超滤膜或疏松反渗透膜是用来描述其分离性能介于反渗透和超滤之间的一种膜。荷电超滤膜是以其化学结构含有荷电基团而定义的, 疏松反渗透膜是以其物理结构而命名, 它们往往指的一种膜。对盐NaCl 截留只有2%~ 3% , 而对于500~2 000 分子量的物质,具有较高的分离率, 同时保持高的水通量。一般染料的分子量正好在这种膜的截留范围, 特别是离子型染料。该膜在低压下操作(10 kg/cm 2) 耐pH值、耐压密、耐污染、耐温等方面都比较突出,前景广阔 [7] 。 3.1.3 辐射降解法 电离辐射可有效地降解染料水溶液,辐射技术和其它技术有很好的协同作用。与常规污染物处理技术相比,辐射技术在常温常压下进行,具有工艺简单、无二次污染等特点,对难降解有机污染物的处理更有其独特长处。[8] 用60Co γ射线辐照甲基橙和活性艳蓝KNR水溶液,辐照后染料水溶液的可见光区和紫外区的特征吸收峰随吸收剂量的增加而渐渐下降至接近零,说明辐射降解反应既破坏了染料分子的发色基团,同时也破坏了染料的有机分子结构。脱色率和COD 去除率均随吸收剂量的增加而增加。过氧化氢与辐射有协同作用,在相同的吸收剂量下,脱色率和COD 去除率均随过氧化氢的浓度增加而增加。另外,该法pH值适用范围很广;溶液的初始浓度越大,COD 去除和脱色效果越差;氧的存在可以促进染料分子的降解。在同样辐照条件下,染料的辐射降解效果因染料分子的结构不同而略有不同[9]。 辐射法处理印染等难降解污水时虽然有机物的去除率高、设备占地小、操作简便,但用来产生高能粒子的装置价格昂贵,技术要求高,而且该方法能耗较大,能量利用率不高,若要真正投入实际运行,还需进行大量的研究工作。 3.2 物理化学法 3.2.1 絮凝法 印染废水的絮凝脱色技术, 投资费用低, 设备占地少, 处理量大, 是一种被普遍采用的脱色技术。某印染厂采用混凝脱色- 悬浮曝气生物滤池工艺处理主要含活性染料的废水,原水CODCr, SS的平均质量浓度分别为296,285 mg/L 和平均色度为550倍, 处理后出水水质相应各项指标分别为40, 20 mg/L 和10 倍, 其去除率分别为87%,
投诉建议

提交

查看更多评论
其他资讯

查看更多

助力企业恢复“战斗状态”:MyMRO我的万物集·固安捷升级开工场景方案

车规MOSFET技术确保功率开关管的可靠性和强电流处理能力

未来十年, 化工企业应如何提高资源效率及减少运营中的碳足迹?

2023年制造业“开门红”,抢滩大湾区市场锁定DMP工博会

2023钢铁展洽会4月全新起航 将在日照触发更多商机