工控网首页
>

应用设计

>

繁华城区浅埋大断面隧道减震爆破技术

繁华城区浅埋大断面隧道减震爆破技术

2006/10/16 9:33:00
1 前 言 城市浅埋、暗挖、硬岩大断面隧道,在我国隧道建设史上并不多见,随着城市建设的不断发展,地面空间已不能满足城市功能的要求,地下空间的开发利用已越来越显示出它的优越性。临江门车站是重庆轻轨较新线的一个中间站,位于重庆市渝中区解放碑商业步行街下,埋深10~14m,开挖高度为20.885m,开挖宽度为23.04m,开挖断面积为421m2。车站周边高层建筑林立,与35层高的世贸中心大厦水平距离仅4.5m,具有典型的城市浅埋硬岩大断面隧道的特点及施工难度。本文以临江门车站隧道的减震爆破施工为例,介绍城市浅埋大断面隧道减震爆破技术,以供同类工程参考。 2 工程地质及结构设计概述 临江门站在区域构造上属于解放碑向斜轴部地段,岩层产状平缓,走向与车站轴线大体一致或以小角度斜交。临江门站出露地层为第四系全新统人工填土,下伏基岩为侏罗系中统上沙溪庙组砂岩和砂质泥岩,无断层构造裂隙发育,围岩拱部为砂岩,边墙大部分为泥岩,较场口一端边墙砂岩较厚,黄花园一端边墙为泥岩,车站底部全部为泥岩。 车站洞室段水文地质条件简单,由于街道市政排水设施完备,因此,仅少量地表水沿着破裂的地下管道渗透于砂岩中,形成基岩裂隙水。场地所在区域地震基本烈度为Ⅵ度。临江门车站隧道最小覆盖层厚度为10.5m,其中地表土层厚2.8m、基岩厚7.7m;最大覆盖层厚度也只有14.58m,其中地表土层厚4.1m、基岩厚10.5m。 车站地面两侧高层建筑林立,车站沿途两侧主要建筑物有:解放碑酒楼和新潮商场(现正在改建为图书金融大楼)、时代广场(在建)、和平电影院、新世纪百货大楼、颐之时大酒楼、重庆世贸中心(在建)、都市广场。对车站隧道影响较大的有:时代广场、世贸大厦、新世纪百货、都市广场。车站较场口端位于邹容路步行街下,街面行人密布,黄花园端地面上车流滚滚;车站地下人防洞室密布,纵横交错,与车站隧道洞室在平面和空间上有交叉、有平行、有重合,人防洞室分布在车站洞室拱部,构成了复杂的工程地质和环境地质条件。 根据临江门站的工程特点,隧道设计采用新奥法设计,车站隧道采用复合式衬砌结构。车站施工采用双侧壁导洞法分步开挖及全断面整体式衬砌,最后开挖核心部分和仰拱。施工步序如图1。
3 钻爆设计与施工 3.1 爆破特点及要求 由于车站隧道位于市中心繁华商业区,隧道埋深浅,地表高层建筑物林立,地下室开挖边界距车站开挖边线水平距离只有4.5~7.8m,基础底部标高在隧道起拱线部位;地面街道行人车辆密度大,地下人防洞室错综复杂。隧道爆破施工必须在确保高质量的隧道开挖断面和进尺的同时,将爆破震动控制在尽可能小的范围内,以保证地表及建筑物的安全和对周围环境的影响。为此,爆破必须满足:爆破震动波速应控制在1.5~2.0cm/s;为保护世贸中心大厦与车站隧道之间的岩柱,该段爆破影响围岩松动圈要求控制在2m以内;炮眼利用率在90%以上,光爆的半壁抛眼留痕迹率在80%以上;平均线性超挖不大于10cm,最大不超过15cm;相邻两循环炮眼衔接台阶不大于10cm;局部欠挖面积小于0.1m2,最大欠挖小于5cm。 3.2 钻爆设计原则 (1)以地面建筑物基础底部(或地面)至爆源中心距离(R)为安全控制半径,借助于经验公式:Qm=R3(Vkp/K)3/α,并以质点振动波速度限值(2cm/s)作为控制标准,对各部分所允许的单段用药量进行反算,并进行试爆试验,以取得合理的爆破参数。 (2)根据现场的地质及施工条件,采用微台阶分部开挖,每部分又分多次爆破,普通段循环进尺控制在2m以内,过世贸大厦段循环进尺控制在1m以内,控制爆破规模,以达到控制质点震动速度的目的。 (3)炮眼按浅密原则布置,控制单眼装药量和单段装药量。 (4)上导洞1部掏槽眼位尽量布置在远离建、构筑物一侧。 (5)上导洞1部及拱部4部开挖断面周边眼间均设直径为50mm的减震空眼,中导洞2、3部开挖时在两侧各预留1m的光爆层。 (6)核心5、7部、仰拱8部的爆破以松动爆破为主,控制爆破飞石对衬砌台车及衬砌混凝土表面的破坏。 (7)地面、洞内均需配合爆破震动监测,及时调整钻爆参数,以满足环境及施工要求。 3.3 钻爆设计 3.3.1 减小爆破地震动强度的方法 本工程除了采用光面爆破施工的减震措施外,拟采用周边密排空眼减震,开挖面增打减震孔、预留光爆层等综合减震措施的爆破技术。 3.3.2 爆破参数选择 爆破参数的确定采用理论计算法、工程类比法与现场试爆相结合,在保证爆破震动速度符合安全规定的前提下,提高隧道开挖成型质量和施工进度。 (1)炮眼深度(L) 本爆破设计的炮眼深度主要受爆破地震动强度控制,设计炮眼深度根据爆破部位不同进行调整,一般为1.0~2.0m。 (2)炮眼数目(N) 本爆破设计炮眼直径采用Φ42mm,每次开挖面积约为36~50m2,单位面积钻眼数为1.5个(未包括光面爆破炮眼)。 (3)炮眼布置 ①周边炮眼布置采用经验公式和工程类比法确定。按规定炮眼间距(E)=(8~12)d(d为炮眼直径);抵抗线:W=(1.0~1.5)E。本设计为隔孔装药,炮眼间距为250mm,炮眼直径为42mm,能满足E值要求。 类似工程地质的装药集中度:q=0.1~0.15kg/m,由于本设计炮眼间距为250mm,且为隔孔装药,因此设计装药集中度取最小值(q=0.1kg/m)。 ②掏槽眼布置主要应用于侧壁导洞1部,本爆破设计采用空眼双层复式楔形混合掏槽。 ③为降低爆破地震动强度,循环进尺根据开挖部位不同来确定,掘进炮眼深度根据循环进尺来确定。 当炮眼直径在35~42mm的范围内时,抵抗线(W)与炮眼深度有如下关系式:W=(15~25)d或W=(0.3~0.6)dL,在坚硬难爆的岩体中或炮眼较深时,应取较小的系数,反之则取较大的系数。 (4) 单眼装药量的计算 周边眼装药参数在上面已确定,其它炮眼的装药量均可按下列公式计算: q=k.a.w.L.λ(kg) (1) 式中:q———单眼装药量(kg); k———炸药单耗(kg/m3); a———炮眼间距(m); w———炮眼爆破方向的抵抗线(m); L———炮眼深度(m); λ———炮眼部位系数(参照表1选取)。
(5)炮眼堵塞 堵塞作用是使炸药在受约束条件下能充分爆炸以提高能量利用率,因此堵塞长度不小于20cm,堵塞材料采用炮泥(砂∶粘土∶水=3∶1∶1)。要求堵塞密实,不能有空隙或间断。 (6)爆破器材的选择 炸药:采用二号岩石销铵炸药,周边炮眼采用Φ25mm小药卷,其它炮眼采用Φ32mm标准药卷。 雷管:孔外采用火雷管起爆,连接件及孔内均采用非电毫秒雷管(1-15段)。为避免爆破时冲击波的叠加,选择非电毫秒雷管时应选用段间隔为75ms以上的各段雷管(1、5、7、9、11、13、14、15共8种段别的非电毫秒雷管)。 导火索及导爆索:火雷管采用导火索引爆;周边炮眼间隔装药,采用导爆索传爆。 (7)装药结构(图2)
掏槽眼和底板眼采用反向起爆,周边眼采用间隔不偶合装药形式。为保证每个周边眼内炸药同时起爆,需使用导爆索连结各药卷。 (8)装药连线 因雷管段数较少、炮眼较多,单段装药量受爆破震速要求的限制较小,因此,采用雷管分段控制和孔外微差爆破相结合的方法,以减少单段起爆药量和起爆次数。 3.3.3 爆破安全验算 地表建筑距隧道的最短距离为10.4m,距世贸大厦地下基础的最短距离为4.5m,震速控制在1.5cm/s(视建筑物结构形式而定)。 Qm=K/R3(Vkp/K′)3/α (2) 式中:Qm———最大一段允许用药量(kg); Vkp———震动安全速度(cm/s); R———爆源中心到震速控制点的距离(m); K———与爆破技术、地震波传播途经介质的性质有关的系数,取160(试验测定值); α———爆破震动衰减系数,取1.8(试验测定值); K′———在爆破施工实践中的爆破震动衰减修正系数(表2),相关于不同的减震措施及爆破临空面的数量。
4 爆破监测与分析 4.1 爆破震动监测 爆破震动监测主要采用由DSVM-4C振动测试仪、891-II型拾振器、计算机、打印机等组成的震动测试系统,量测过程由计算机自动进行控制(图3)。 拾振器1、拾振器2、拾振器3分别用来测量震动速度的水平径向分量(vr)、水平切向分量(vτ)和垂直分量(vz)。爆破震动监测结果如表3所示。
4.2 围岩松动圈监测 为了监测爆破对临江门车站与世贸中心之间岩柱的影响,采用美国GSSI公司生产的SIR-10H雷达对爆破后的断面进行连续探测,以形成CT剖面,监测围岩松动圈的变化,分析爆破震动对该段岩柱的影响。表4为部分地段通过地质雷达探测松动圈的探测结果。
从表4可以看出,在车站洞室各部位上松动圈的分布是较为均匀的,这种均匀性保证了松动圈外岩石仍然有一定的完整性,没有明显的薄弱环节,而且因为选用雷达精度较高,测得的松动圈内大部分围岩未受到明显破坏,因而具有较强的承载能力。 5 结论及建议 由于采用了一系列综合减震措施,使开挖爆破对隧道周边围岩的影响降低到了最小程度,世贸段的爆破对围岩松动圈的影响基本控制在1.5m以内,其余部位基本控制在2.0m以内,从而保证了围
投诉建议

提交

查看更多评论
其他资讯

查看更多

助力企业恢复“战斗状态”:MyMRO我的万物集·固安捷升级开工场景方案

车规MOSFET技术确保功率开关管的可靠性和强电流处理能力

未来十年, 化工企业应如何提高资源效率及减少运营中的碳足迹?

2023年制造业“开门红”,抢滩大湾区市场锁定DMP工博会

2023钢铁展洽会4月全新起航 将在日照触发更多商机