工控网首页
>

应用设计

>

同站台换乘车站方案研究

同站台换乘车站方案研究

2007/5/10 9:38:00
1 前言 换乘站在城市轨道交通线网中起着重要作用。位于城市轨道交通线路的交叉点或汇合点处,其功能是把线网中各独立运营的线路搭接起来,为乘客换乘其他线的列车创造方便条件。使线网形成一个四通八达的整体,在国外以轨道交通换乘站为基础,形成了许多大型综合换乘枢纽。东京地铁的大型换乘站有3—5条线路进行交叉换乘,斯德哥尔摩地铁的3条线路与火车站进行换乘。在欧洲还有一些由数条地铁线、市郊铁路和公共交通总站组成的特大型综合换乘枢纽。这些换乘枢纽,对方便乘客乘车,提高城市的整体水平和投资效益,发挥着重要作用。 城市轨道交通换乘站,按照车站布置形式有十字型换乘站,T字换乘站,L型换乘站和平行换乘站4种。其中平行换乘站又称为同站台同方向换乘站,因其使用方便,颇受广大乘客的欢迎。据初步统计,北京市轨道交通路网规划中有15个同站台换乘车站。广州轨道交通线网有5个同站台换乘车站5个。南京轨道交通线网有7个同站台换乘车站。杭州轨道交通线网有9个同站台平行换乘车站。上海轨道交通线网有14个同站台换乘车站。 目前,一提到同站台换乘车站,人们想到的往往是双岛4线式换乘站。但笔者认为这种车站在使用方面和工程方面存在一些问题,不是最佳方案,单岛三层4线式同站台换乘车站更具有优势。 本文的研究目的是想探讨同站台换乘站的合理方案,以期提高车站的使用效率,降低工程造价。愿以本文作为引玉之砖,与业内同仁共同探讨。 2 同站台换乘车站方案分析 概括起来城市轨道交通的同站台换乘车站有三种形式:就是双岛4线车站,双岛5线车站,单岛4线车站。现分别介绍如下: 2.1 双岛4线换乘车站 双岛4线车站,是由城市轨道交通中两条并行线路构成的换乘站。是同站台换乘车站的主要形式。他将两条运营线路的上行线布置在一个站台上,将两条下行线布置在另一个站台上。乘客下车后在本站台即可换乘另一条线同方向的列车,使用非常方便。 在两个站台的端部还设有一条单渡线,作为两条线的联络线,用于调转运营列车。本方案的特点是两条线路的左线和右线在车站端部有2处立体交叉点。需要进行展线和疏解,线路纵断面的坡度较大,运营条件恶化。 目前城市轨道交通车站,一般采用SMW工法或连续墙法进行明挖施工。双岛4线车站为双层6垮钢筋混凝土框架结构。下面图a是该站的平面和横断面图。 双岛4线换乘站的优点,一是便于同站台同方向换乘。二是车站埋深较浅,便于施工。 双岛4线车站的缺点,一是反方向换乘不方便。换乘反方向列车的乘客,必须经过站厅层再下到对面的站台上乘车,走行距离较长。二是车站结构寛约41m,在有限宽度的城市道路上车站定点和工程实施难度很大。三是工程量大,造价高。
2.2 双岛5线换乘车站 双岛5线换乘站由双岛4线车站演变而来。在某些城市,为使盾构机能够通过车站,须扩大中间两股道的线间距,故在两股道中间增加了一条停车线,形成了双岛5线式车站。 图b是由两条相互交叉线路构成的双岛5线换乘车站。A线的两股道设在中间,B线的两股道设在外侧,两线在站外进行立体交叉。 在站台右端设置了两条单渡线,既可作为A B两条线的联络线,也可通过该渡线组织列车共线运营。车站中间的停车线可用于停放A线的故障列车,或在降级运营时供列车折返。为增加停车线的灵活性,在其两端设置了单渡线和交叉渡线。 本方案的使用功能及优缺点,与双岛4线车站相同。只是车站结构加宽到46m,工程实施难度更大。下面是该站的平面和横断面图。
2. 3 单岛4线换乘车站 单岛4线同站台换乘车站,是由双岛4线车站变化而来。它将该方案的两个岛式站台分成上下两层重叠设置。由此形成了单岛3层同方向换乘车站。地下一层为站厅层,第二层、第三层为站台层。 下图C是由两条并行的线路构成的同站台换乘车站。A、B两条线在此经过合拢、顺坡叠加,将A线的两条正线重叠布置在车站上侧,将B线的两条正线重叠布置在车站的下侧。由此取消了车站两端的立体交叉点,改善了线路条件。为便于运营,在站台端部还设有一条单渡线。作为两条运营线间的联络线。 与双岛4线换乘站相比,单岛4线换乘站使用更加灵活。如果将A、B两条线的上行线组合在一个站台上,两条下行线组合在另一个站台上,乘客可进行同站台同方向换乘。若经过楼梯到上层站台或下层站台也可进行反方向换乘。如果将两条线的上行线与下行线组合在一个站台上,乘客可进行同站台反方向换乘。 图d是由两条相互交叉的线路构成的单岛4线换乘车站。两条线路在区间进行立体交叉后,再进行顺坡叠加,形成换乘车站。在站台端部设有一条联络渡线。本方案与图b相比减少了一个立交点,线路条件得到改善。 单岛4线同站台换乘车站具有以下优点: (1) 由于线路重叠设置,取消了车站两端的立体交叉点,改善线路条件。 (2) 车站的宽度较小。按14m宽站台计算,主体结构的宽度23.2m。占地少便于工程实施。 (3) 既可进行同站台同方向换乘,经上、下层站台进行反方向换乘也很方便。 (4) 通过线路组合也可进行同站台反方向换乘。 (5) 土建工程量小,工程造价低。 单岛4线同站台换乘站的缺点是车站埋深较大,基坑支护结构及降水费用较高。
2. 4其他形式的同站台换乘车站 根据盾构机通过车站,以及两端区间隧道采用盾构法施工要求,近年来有人提出了一些新的车站方案。图e中(一)和(二)是由双岛4线车站方案变化而来。图e(一)是将车站中间的两股道分成上下层错开,将车站结构变为三层,以满足区间盾构法施工和盾构机通过车站的静空要求。由此使车站的工程量和造价大幅度提高。该方案在地下二层和地下三层多出的面积,可用作车站生产管理用房和设备机房。地下一层可用于商业开发。 图e(二)将上下层站台重叠设置,上下层股道错开,使主体结构减少了一垮。车站的空余面积和工程投资有所减少。该方案地下二层的站台较宽,可在中间布置一些管理用房。 图e(三)是由单岛4线车站方案变化而来。在上下层站台之间增加一个设备层,可以满足两端区间盾构施工和盾构机通过车站的静空要求。由于车站埋深增加,工程造价大幅度提高。
总的来看,图e其他形式的同站台换乘方案,虽然解决了盾构机通过车站和区间盾构法施工的问题,但也存在以下问题。一是车站结构加高了一层,大幅度提高了车站的工程造价。二是车站的建筑面积大大超过实际需要。三是乘客进出站及换乘条件恶化。 据了解日本有一种双圆盾构,可施作上下重叠的矩形断面隧道。完全没有必要为两端区间盾构施工加高车站结构。 3 车站工程造价比较 为了进一步评价上述同站台换乘车站方案,需要测算各方案的经济指标。除去各方案相同部分的设备投资以外,仅对其可比部分的土建工程量及工程造价进行比较。方案比较的基础条件是:车站采用明挖法施工,基坑支护采用SMW工法桩。桩长按基坑深度的1.6倍。参照工程概算定额,土方挖运费按65元/m3计算,钢筋混凝土费按1500元/ m3计算,支护结构费按700元/ m3计算。各方案的估算结果如下表。 方案比较结果说明,在图a、图b、图c组方案中,以单岛4线车站的工程造价最低。双岛5线车站造价最高。在图e(一)、(二)、(三)组方案中,图e(三)方案造价最低,图e(一)方案造价最高。 车站工程方案造价比较表
4 研究体会 通过对几种同站台换乘车站方案的研究比较,笔者有以下几点认识: (1)双岛4线换乘车站,便于进行同站台同方向换乘。而对换乘反方向列车的乘客很不方便。 (2)双岛4线(含5线)换乘站主体结构宽41m—46m。在城市道路中选址定位难度较大,车站施工对城市交通的影响很大。工程造价高。 (3)单岛4线换乘车站,便于进行同站台同方向换乘。经上、下层站台进行反方向换乘也很方便。通过线路组合也可进行同站台反方向换乘。 (4) 单岛4线换乘站主体结构宽23m左右,占地较小。工程实施难度减小,工程造价低。 (5) 双岛4线车站和单岛4线车站,各有优点、缺点和适用条件。对一般同站台换乘车站应采用单岛4线式车站; 对换乘客流量较大的线路,应采用2点换乘。即两条线路并行一个区间,连续设2个换乘车站。其中一个车站以同方向换乘为主,采用双岛4线式车站。另一个车站以反方向换乘为主,采用单岛上下层4线式车站。使不同方向的换乘客流都得到了照顾。 (6) 其他形式的同站台换乘方案,虽然解决了盾构机通过车站和两端区间盾构法施工的问题,却使车站结构加高了一层,使乘客进出站及换乘条件恶化。并大幅度提高了车站的工程造价。 据了解日本有一种双圆盾构机,可施作上下重叠的矩形断面隧道。如此看来,对图e其他形式的同站台换乘方案,应该经过方案比较慎重使用。 以上只是个人的一点浅见,愿提出来供业内同仁思考。有不当之处,欢迎大家批评指正。 信息来源于:中国城市轨道交通网
投诉建议

提交

查看更多评论
其他资讯

查看更多

助力企业恢复“战斗状态”:MyMRO我的万物集·固安捷升级开工场景方案

车规MOSFET技术确保功率开关管的可靠性和强电流处理能力

未来十年, 化工企业应如何提高资源效率及减少运营中的碳足迹?

2023年制造业“开门红”,抢滩大湾区市场锁定DMP工博会

2023钢铁展洽会4月全新起航 将在日照触发更多商机