工控网首页
>

应用设计

>

SXZ8-2040HM2中央空调变频调速节能改造

SXZ8-2040HM2中央空调变频调速节能改造

2007/6/8 9:47:00
(一) 中央空调系统的基本构成(见附图1—1所示) 中央空调系统由三大部分组成,制冷系统、冷却水循环系统、冷冻水循环系统。 1、制冷系统 (冷冻机组) 冷冻机组是中央空调的心脏,制冷的源头,它由压缩机、冷凝器等组成。其功能是将通往各用户的循环回水,由冷冻机组进行“内部热交换”降温为7—10℃的冷冻水。型号是:SXZ8—2040HM2,中文的全称是:《蒸气双效型溴化锂吸收式冷冻机组》制冷量为2040KW,冷水流量为350立方米/小时。 2、 冷却水循环系统 它是由冷却泵、冷却水塔、冷却风机和管道组成。其作用是利用冷却泵加压,将冷却水送到冷冻机组里不断循环,带走冷冻机(机械运动及内部热交换产生的热量)组释放的热量。 3、冷冻水循环系统 由冷冻泵、管道、风箱及风机组成,从冷冻机组“冷冻”的冷冻水,由冷冻泵加压,输送到各用户风箱,用风机将风箱里蒸发器蒸发的冷空气带走各房间的热量。 (二)、温度控制 用热电阻和热电偶配合温度控制保护电路,触摸屏显示观察。 (三) 拖动系统 1、 冷冻机组拖动系统:压缩机及机组、配电量为6。25KW,其中有配电量共为5。5KW电泵二台,压缩机由热蒸气动力拖动。 2、 冷却泵拖动系统:二台55KW的水泵电机,Y—△启动一用一备。 3、 冷冻泵拖动系统:二台55KW的水泵电机,Y—△启动一用一备。 4、 风机拖动系统:一台22KW的水冷却风机,若干台4KW的风机。 (四) 系统改造的基本考虑 1、要达到节能目的 水泵是二次方律负载,通俗的讲就是弹性负载,收缩性较强,具有十分可观的节能潜力。水泵阻转矩是与转速的二次方成正比,故低速时阻转矩比额定转矩小得多。在工频额定电压下运行时,水泵的有效转矩和负载转矩相差甚多,这是水泵类负载的机械特性,像是大马拉小车,功力因素、效率均很低。 图4—2 A是水泵负载在工频额定电压下运行的机械特性曲线,当负载转矩等于电动机的额定转矩TLN时,额定工作点为N点,转速为nN 当负载转矩减轻为TLQ时,工作点移到Q点,转速升高为nq。如上所述,这时的功率因数和效率均很低。
图4-1A额定电压下运行 图4-1B 变频降压运行 变频调速则可以根据U/F的比率来调整电机转速和有效转矩,降低电机承受的电压和频率,使电机的有效转矩和负载转矩接近,图4—2 B是降压后水泵的机械特性曲线。电动机的有效转矩为TME和负载转矩TLQ十分接近。则功率因素和效率处于最佳状态,减小了电流,同时电压也下降了。 我们知道: P=UICOS¢ 根据这公式推导,由于输出电压、电流下降了,输出功率自然也下降了,达到了节能的目的。 2、变频调速系统方案(图4—1所示) 前面讲过,中央空调系统外部热交换是由两个循环系统来完成,冷却水循环系统、冷冻水循环系统。我们知道水泵电机的转速与循环水的速度成正比,而整个中
图4-2图4-2 变频调速方框原理图
央空调系统热交换的速度与循环水的速度也成正比,如果根据回水和进水的温度来控制循环水流动的速度,从而控制了热交换的速度。根据这一原理冷却泵、冷冻泵可以以温度为依据,用变频内置PID智能调速来控制电机的转速。是比较合理的控制方式。温度高说明空调系统要求释放的热量增大,应提高水泵电机的转速,反之,可以降低转速,节约能源。 (五)系统的具体改造方案 1、冷冻水循环系统控制 冷冻水的出水温度是冷冻机组“冷冻”的结果,是比较稳定的。因此,单是回水温度的高低就足以反映房间内的温度,所以,冷冻泵的变频调速系统,可以根据回水温度来控制,回水温度高,说明房间温度高,应提高冷冻泵的转速,加快冷冻水的循环速度。反之,回水温度低,说明房间温度低,可以降低冷冻泵的转速,减缓冷冻水的循环速度。 2、冷却水循环系统控制 由于冷却塔的水温是随环境温度变化的,其单侧不能准确的反应冷冻机组内部产生热量的多少。所以冷却泵的速度应以回水和进水的温度作为依据,来实现回水和进水恒温差控制,使电机的变频调速合理化。温差大说明冷冻机组产生的热量大,内部热交换的速度要加快,应提高冷却泵的转度,以增大冷却水的循环速度。温差小,说明冻机组产生热量小,可以降低冻却泵的转速,以减小冷却水的循环速度。 3、恒温(度)差控制 冷冻水循环系统,单是回水的温度足以反应外部热交换的速度。可用Pt100铂电阻和E系列温控器配合使用,通过热电阻和温控器把回水温度转换成电信号,输出电流为4—20mA,作为变频器的反馈信号,和给定信进行比较。而冷却水循环系统,水塔的水温是随环境温度变化而变化的。单侧不能反应热交换的速度,必须要以回水和进水的温度作为依据。可以用Pt100铂电阻二个温差变送器配合使用,通过热电阻和温差控制器将回水和进水的温差转换成电信号。输出电流为4—20mA,作为变频器的反馈信号,和给定信号进行比较。决定水泵的转度。 (六)变频器参数设置及系统控制原理 1、时代变频器(TVF2455)的相关参数设定 9952=1 数据初始化 9906=2 PID应用宏,该应用宏为闭环控制系统设计,适用于压力、温度、流量等控制。 PID应用宏有如下内容 输入信号 输出信号 输入U/I选择 启动/停止(DI1 D15) 模拟输出变量 频率 模拟给定 (AI1) 频率输出变量 频率 AI1 0—10V 实际值 (AI2) AI2 0—10V 控制方式 (DI2) 继电器输出1 故障输出 或4—20MA 允许运行 (DI6) 继电器输出2 匀速运行 1001=1 1=(DI1)启动/停止 1002=2 2=(DI2)得电启动(PID) 1003=1 电机方向选择 1=正方向 1103=1 外部给定1选择 1=AI1 由模拟输入AI1给定 1201=4 4=DI3 多速输出 1205=50 多速4的给定 对应DI3 单位 HZ 1401=4 4=故障吸合 继电器输出1的变量 2102=1 停止功能 1=惯性停车 2008=50 最大频率 单位 HZ 2007=28 最小频率 单位 HZ 4405=1 偏差值取反 1=取反 2202=8 加速时间 单位 S 2602=2 U/F比率 2=平方型 通常用于平方负载转矩的应用中,例如水泵和风机。 2、控制原理图说明(以冷却系统为例 附图6—2所示) AI1 REF AGND RP—0-10V模拟给定电压。AI2 AGND—反馈信号(4-20MA)。 DI6—允许运行。 DI1—启动 。 DI2 —手动/自动(闭合PID控制)。 DI3—恒速运行。KM继电器—故障吸合。 当刚启动水泵时,因冷却水的进水口和回水口温度相等,热电阻Rt1和Rt2无温差。温差变送器只有微小输出,变频器置于手动位置,这时KI1 KI4 KI6闭合变频器恒速运行。20分钟后,冷却水管的进水口和出水口温度有了差值,温差变送器根据温差值输出4—20mA的偏差信号,作为变频器的反馈信号。KI4断开、KI2 闭合,变频器进入自动PID闭环控制环节,模拟给定电压和反馈信号比较,得出偏差值在内部进行比例、积分、运算后,输出一个模拟给定频率信号,去控制冷却泵电机的频率,从而控制了电机的速度。温差大时,说明冷冻机组内部“热交换加快”,电机转速加快,温差小时,冷冻机内部“热交换减慢”电机转速可以减慢。另一方面,由于变频器设置2602=2,可以充分利用变频器调压、调频的突出特性。使U/F比率处于最佳状态,这时有效转矩和负载转矩十分接近,达到节能的目的。 (七)改为变频调速运行效果 通过近一年的运行,用户反应半年就收回了成本,如果以平均节能30℅算,功率110KW,每小时节能至少30度,达到预期的效果。具体有如下几点: 1、通过观察冷却泵转速下降为,最大频率是:42HZ,最小频率是:28HZ。节能35℅左右。冷冻泵转速下降为,最大频率是:46HZ 最小频率是:35HZ。节能25℅左右。 2、以每天16小时计算一年可以节能:172800度电。 3、简化了控制电路,电气故障率减少了。 4、控制温度效果较好,房间内温度比较平稳。 5、电机转速下降了,机械磨损明显减小。实施了惯性停机,消除了水锤现象。 致谢:作者在撰写论文的过程中,十分高兴地得到中山技师学校高迅老师的有益指导,并对本文修改提出了宝贵意见。还有电器工程师曾华春同志提供的书籍、有关技术资料、及宝贵咨询。借此机会表示衷心感谢! 参考文献 1、《常用变频器功能手册》 《变频调速应用实践》张燕宾 编著 机械工业部出版。 2、〈新型PID控制及其应用〉陶永华 尹怡欣 葛芦生 编著 机械工业部出版。 3、《制冷空调节能技术》 李晓燕 闫泽生 编著 中国建筑工业出版社
图1-1中央空调系统基本构成图图1-1中央空调系统基本构成图
图6-2冷却泵系统变频调速控制图6-2冷却泵系统变频调速控制
投诉建议

提交

查看更多评论