工控网首页
>

应用设计

>

风力发电技术与功率半导体器件及控制系统

风力发电技术与功率半导体器件及控制系统

2009/3/4 14:53:00

      通过风能获得太阳的能量并非新鲜事物,但当今的功率半导体器件与控制系统却使这种能源更加适用。  
       在现有的太阳能利用技术中,风力涡轮发电机成为大规模“绿色电能”生产的先锋。
  今天,美国政府和欧洲各国政府都在大力支持可持续能源的生产。2003年,美国的风力发电厂装机总值达 16 亿美元,预计到 2020 年,还将再增 10 万 MW 的装机容量,可满足美国电力需求的 6%。美国还将在 Majave 沙漠的 Tehachapi 建立世界上最大的地面风力发电场。但 2002 年的数据显示,全球 90% 的新增容量还是在欧洲。

可变的能量输入是对设计师的挑战
  先驱者们在多大程度上解决了困扰今天设计师的诸多问题,对此作出正确的估计是有益的。在这些问题中,最大的要数能量供给的可变性。普通的蒸汽涡轮机发电厂都用四个重要的机制来调节发电机的速度和电力输出:产生蒸汽的初级能耗速率;向涡轮机输送蒸汽的速率;发电机的电激励水平;转子负载角的变化。这样的发 电机是同步发电机,其中转子与电网频率的整倍数同步并以这一整倍数频率旋转。改变转子相对于零相位差“空载”位置的角度,就可以增加或减少送至电网或从电网获得的电能,从而分别使发电机或电动机运行。在典型的发电机运行中,转子超前电网约 30°。由于电力输出直接耦合到电网,强大的电网条件提供的发电机轴转矩可控制其速度,保持恒定的电网频率。
  那么,风力能产生多少功率呢?理论表明,空气密度已知时,可用的每平方米瓦特能量值随气流的三次方变化。因此,转子性能对风力涡轮发电机设计的每个方面都是至关重要的。至关重要的参数之一就是叶尖速度比,亦即轮叶叶尖速度与自由流动空气流速度之比。这一参数描述了转子的功率系数,1919 年德国物理学家 Albert Betz 认为该系数不可能超过 0.593。在实践中,典型的转子功率系数在叶尖速度比为 7 时很少超过 0.4(图 1)。如果转子速度固定不变,效率损失忽略不计,你就可用以下公式计算风力涡轮发电机的功率输出:
  功率=Cp×r/2×V3W×A
  式中,CP 为转子的功率系数,r为空气的密度(单位为kg/m3),vw 为风速(单位是m/s),A 是转子扫过的区域面积(单位为m3)。所以,依据转子扫过的面积以及每小时千瓦的发电量来考虑风力涡轮发电机是有益的。设计师的任务是以成批生产的合理价格,找到转子结构与发电机原理的最佳组合,从而实现最大的总功率系数。

 

    
  实用型风力涡轮发电机输出功率从 20 kW~ 30 kW,现在的最高水平可达 4.5 MW。它一般使用三个转子轮叶,因为实验表明,这种结构可提供效率、动态性能与结构经济性之间的最佳平衡。核心部件一般包括转子、一个增加发电机轴速的齿轮箱、发电机、电路接口以及控制回路(图 2)。最大的问题一直是如何稳定转子速度,以实现最高的发电量。虽然风力涡轮发电机是一种机械电子系统,无法将各个关键部件隔离开来,但转子控制原理却是一个决定性因素。控制系统必须在从静止无风直到可能一个世纪才出现一次的多方向、多速度变化的狂风的情况下保护机器的运行。作为相关质量的一个指标,Vestas公司的 V90 系列3MW风力涡轮发电机的转子组件重量为40吨,尽管它使用了许多昂贵的碳纤维复合材料。

失速控制的简单性掩饰了问题
  一种限制功率获取的方法是使转子组件转动到不受风吹的位子。偏转系统一般用于保持转子迎着风向,它包括风速传感器、风向传感器、一个电动或液压电动机驱动装置、接口电路以及使发电机舱旋转的齿轮与轴承。传感器组件经常位于发电机舱的后方,通常是一个带风向标的三环风速计。其它技术包括超声设备,如 Vestas公司 V90-3.0MW 上使用的一对超声装置。实际上,转子后面的风速略低于真实的风速,这是由于旋转翼片的局部低压效应所造成的。虽然这一差异不很重要,但特性化可以补偿这样的误差。然而,由于经验表明采用偏转系统的速度控制的结果并不好,所以一般设计要么保持迎风的最大功率位置,要么将发电机舱转到最小风能方向以实现停机。
  用来稳定能量获取的最简单的气动方法是采用转子有一个固定的倾斜角的被动失速(停转)控制。在给定的转子速度下,风速增加会使气流分散在轮叶表面上,产生失速效应。这种气流分散会自动限制能量的获取,但却与空气密度和轮叶表面抛光质量有关。这种方法还要求稳固的电网条件以及一个强大的发电机来保持稳定性。如果电网连接失效或发生电力故障,就必须预防转子超速,从而要求转子上有气动刹车装置,以及在输入轴上有普通的碟式机械刹车装置。由于转子有固定的倾斜角,而且不能转至最高转矩位置以利于起动,所以有时需要以电动
机模式运行发电机,使转子加速到与电网同步的速度。最后,这一结构必须足够牢固,能承受失速控制特有的大动态负载。


     虽然如此,仍有一些成功的风力涡轮发电机采用了这一原理。 Nordic WindPower公司 的 1000 型1MW风力涡轮发电机,简易而又重量轻,采用一个双轮叶的失速控制的转子,其扫过面积为 2290m2。这种涡轮发电机是自起动的,轮叶上有失速条,以减小某些早期失速控制涡轮发电机的峰值功率曲线,从而实现一个顶部平坦的功率曲线。转子采用经玻璃纤维强化的聚脂结构,因为这种结构具有较好的气动弹性,有利于“软性”或“挠性”结构便于吸收大动态负载。借用直升飞机的其他部件包括一个“跷跷板式”叶毂,它的弹性轴承可以使轮叶与输入轴有 ±2° 的相对运动,从而降低两者间的风切变力。发电机控制系统和偏转控制系统中的额外阻尼也可进一步提高结构的挠性。
  由 Weier 电子公司制造的发电机是一种四极单速感应式发电机,其转子比旋转电磁场转得稍快一些。这种“滑差”可提供一种阻尼作用,有助于抑制机电振荡。只要切换发电机转子电路内的电阻来控制激励电流,这个滑差值就在 1% ~ 10% 范围内变化。由于 感应式发电机的转矩与滑差成正比例,因此这种方式就具有速度控制功能,而异步发电机则很难实现这种控制功能。在滑差为0%时,发电机与电网频率同步,既不产生也不消耗电力(转子消耗的无功功率除外)。同样,如果发电机转速比电网频率低,则它进入电动机模式,并吸收电网的电流。为限制这一电流消耗,在风速低于约 4m/s ~5m/s (即涡轮发电机的所谓切入速度)时,输入轴碟式刹车通常能阻止转子的运动。
  Vestas 公司同样将滑差控制技术应用于它的 OptiSlip 系统,而转子上的电子电路与定子上的控制器之间则采用光学耦合。在本例中,控制值约为10%,工作时间约为10ms,从而在湍流条件下实现平稳的功率输出,并降低结构负载。滑差值也会影响发电效率,兆瓦级发电机的滑差值一般工作在1% 范围内,效率约为95%。因为转子电路要消耗无功功率,所以功率因数一般都较低,约为0.87。由于这一原因,开关电容器组是传统系统不可分割的一部分,但功率电路会越来越多地控制功率因数。就 Nordic公司的 1000 型涡轮发电机而言,开关电容能在涡轮发电机的整个工作范围内将输出功率因数保持在 1。

    

              
  只要把阻尼因素引入偏转系统的控制环路,就可能使轮叶绕塔轴进行一定程度的摇摆运动,从而吸收湍流。因此,1000涡轮发电机的结构可以承受 55m/s 的风速,并能在 4m/s的风速下开始工作,而在 25m/s 风速下停止工作。在转子速度为 25 rpm,转子轮叶叶尖速度为 71m/s时,该发电机能在17m/s 风速下输出1MW 最大功率。当转子刚开始超速时,离心力驱动液压释放阀门,使轮叶叶尖转至刹车位置。专业生产风力发电系统的 Mita-Teknik 公司,它所生产的 SCADA(管理控制与数据采集)系统也能驱动气动刹车和机械刹车。发电机通过挠性电缆向塔座输出690V三相 交流电。SCADA 系统可以卷回电缆以防止缠绕。SCADA 系统与中心设备之间的通信是通过调制解调器和电话线,还有一个 PC 用来独立监控与记录涡轮发电机的运行情况。

控制系统简化了功率获取
  许多风力涡轮发电机的设计师都喜欢采用转子倾斜角控制技术,因为这一技术可以大大缓解速度变化问题和系统功率获取问题。当代产品有两种不同的倾斜角控制方法,第一种方法是逐渐将轮叶对空气气流的攻角从满功率的最大位置减小到获取最小功率的周期变距位置 ;第二种方法是将攻角增大到发生气动失速点。丹麦工程师 MB Pedersen 和 P Nielsen 于 1980 年在实验型 Nibe-A 和 Nibe-B 涡轮发电机中试验了这两种方法(参考文献 1)。他们的试验结果显示:全轮叶倾斜角控制可使输出特性更为平滑,并有可能在高风速时减小转力推力(图 3)。如今,更先进的轮叶气动算法和控制算法,有助于减小两者之间的差别。

            

投诉建议

提交

查看更多评论
其他资讯

查看更多

助力企业恢复“战斗状态”:MyMRO我的万物集·固安捷升级开工场景方案

车规MOSFET技术确保功率开关管的可靠性和强电流处理能力

未来十年, 化工企业应如何提高资源效率及减少运营中的碳足迹?

2023年制造业“开门红”,抢滩大湾区市场锁定DMP工博会

2023钢铁展洽会4月全新起航 将在日照触发更多商机