工控网首页
>

应用设计

>

变频器的发展趋势

变频器的发展趋势

2009/3/17 8:15:00

        变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。         交流电机变频调速已成为当代电动机调速的潮流,它以体积小、重量轻、转矩大、精度高、功能强、可靠性高、操作简便、便于通信等功能优于以往的任何调速方式,因而在钢铁、有色、石油、石化、化纤、纺织、机械、电力、电子、建材、煤炭、医药、造纸、注塑、卷烟、吊车、城市供水、中央空调及污水处理行业得到普遍应用。文章介绍了日、美、欧发达国家变频调速技术进入我国市场和国产企业崛起的概况,并指出变频器在技术上向高性能、模块化、专用化、多功能发展。用量不断增加,价格不断降低,行业组合兼并的结果,有向国外拓展的可能。         交流电动机变频调速已成为当代电机调速的潮流,它以体积小、重量轻、转矩大、精度高、功能强、可靠性高、操作简便、便于通信等功能优于以往的任何调速方式,如变极调速、调压调速、滑差调速、串级调速、整流子电动机调速、液力偶合调速,乃至直流调速。因而在钢铁、有色、石油、石化、化纤、纺织、机械、电力、电子、建材、煤炭、医药、造纸、注塑、卷烟、吊车、城市供水、中央空调及污水处理行业得到普遍应用。

        运动控制系统的发展变频器是运动控制系统中的功率变换器,运动控制系统是作为机电能量变换器的电气传动技术的发展。当今的运动控制系统是包含多种学科的技术领域,总的发展趋势是:驱动的交流化,功率变换器的高频化,控制的数字化、智能化和网络化。因此,变频器作为系统的重要功率变换部件,提供可控的高性能变压变频的交流电源而得到迅猛发展。

 

       变频器技术的发展趋势经历大约三十年的研发与应用实践,随着新型电力电子器件和高性能微处理器的应用以及控制技术的发展,变频器的性能价格比越来越高,体积越来越小,而厂家仍然在不断地提高可靠性实现变频器的进一步小型轻量化、高性能化和多功能化以及无公害化而做着新的努力。变频器性能的优劣,一要看其输出交流电压的谐波对电机的影响,二要看对电网的谐波污染和输入功率因数,三要看本身的能量损耗(即效率)如何?这里仅以量大面广的交—直—交变频器为例,从技术上看在以下几个方面会进一步得到发展:

1.主电路功率开关元件的自关断化、模块化、集成化、智能化,开关频率不断提高,开关损耗进一步降低。低压小容量变频器普遍采用的功率开关器件是:功率MOSFET、IG-BT(绝缘栅双极度晶体管)和IPM(智能功率模块)。中压大容量变频器采用有:GTO(门极可关断晶闸管)、IGCT(集成门极换流晶闸管)、SGCT(对称门极换流晶闸管)、IEGT(注入增强栅晶体管)和高压IGBT。

2.变频器主电路的拓扑结构方面:变频器的网侧变流器对低压小容量的常采用6脉冲变流器,而对中压大容量的采用多重化12脉冲以上的变流器。负载侧变流器对低压小容量的常采用两电平的桥式逆变器,而对中压大容量的采用多电平逆变器。值得注意的是,对于四象限运行的传动,为实现变频器再生能量向电网回馈和节省能量,网侧变流器应为可逆变流器,出现了功率可双向流动的双PWM变频器,对网侧变流器加以适当控制可使输入电流接近正弦波,并使系统的功率因数接近于1,减少对电网的公害。目前,低、中压变频器都有这类产品。公用直流母线技术的采用使多台(或多轴)传动系统能量更好利用,提高系统的整体运行效率,并可降低变频器本身的价格。公用直流母线也可以有再生型和非再生型的。探索采用谐振直流环技术使变频器的功率开关工作在软开关状态,器件损耗大大下降,开关频率可进一步提高,因电压和电流尖峰引起的E-MI问题得到抑制,可取消缓冲电路。

3.脉宽调制变压变频器的控制方法:正弦波脉宽调制(SPWM)控制。消除指定次数谐波的PWM控制。电流跟踪控制。电压空间矢量控制(磁链跟踪控制)。

4.交流电动机变频调整控制方法的进展:由标量控制(V/f控制和转差频率控制)向高动态性能的矢量控制和直接转矩控制发展。开发无速度传感器的矢量控制和直接转矩控制系统。

5.微处理器的进步使数字控制成为现代控制器的发展方向,运动控制系统是快速系统,特别是交流电动机高性能的控制需要存储多种数据和快速实时处理大量信息。近几年来,国外各大公司纷纷推出以DSP(数字信号处理器)为基础的内核,配以电机控制所需的外围功能电路,集成在单一芯片内的称为DSP单片电机控制器(如ADI的ADMC3��系列、TI的TM S320C240和Motorola的DSP56F8��系列),价格大大降低,体积缩小,结构紧凑,使用便捷,可靠性提高。DSP的最大速度为20~40MIPS,单周期指令执行时间快达几十纳秒,它和普通的单片机相比,处理数字运算能力增强10~15倍,确保系统有更优越的控制性能。数字控制使硬件简化,柔性的控制算法使控制具有很大的灵活性,可实现复杂控制规律,使现代控制理论在运动控制系统中应用成为现实,易于与上层系统连接进行数据传输,便于故障诊断加强保护和监视功能,使系统智能化(如有些变频器具有自调整功能)。

6.交流同步电动机已成为交流可调传动中的一颗新星,特别是永磁同步电动机,电机获得无刷结构,功率因数高,效率也高,转子转速严格与电源频率保持同步。同步电机变频调速系统有他控变频和自控变频两大类。自控变频同步电机在原理上和直流电机极为相似,用电力电子变流器取代了直流电机的机械换向器,如采用交—直—交变压变频器时叫做“直流无换向器电机”或称“无刷直流电动机(BLDC)”。传统的自控变频同步机调速系统有转子位置传感器,现正开发无转子位置传感器的系统。同步电机的他控变频方式也可采用矢量控制,其按转子磁场定向的矢量控制比异步电机简单。开关磁阻式电机(SR)是一种特殊类型的同步电机,定转子为双凸极结构,结实无刷,输出转矩较大,由于SR电动机的绕组只需单方向电流,因此给它供电的只需单极性功率变换器就可以了,电路简单。传统的SR电动机调速系统同样需要位置检测器,目前也正在开发无位置传感器的SR调速系统。SR电机优点突出,应用领域日益扩大,稍显逊色的是:SR电动机功率变换器输出的是不规则电流脉冲,低速时导致运行噪声和转矩脉动问题较为突出,这有待于进一步改进控制方法。

       交流变频调速技术是强弱电混合、机电一体的综合性技术,既要处理巨大电能的转换(整流、逆变),又要处理信息的收集、变换和传输,因此它的共性技术必定分成功率和控制两大部分。前者要解决与高压大电流有关的技术问题和新型电力电子器件的应用技术问题,后者要解决(基于现代控制理论的控制策略和智能控制策略)的硬、软件开发问题(在目前状况下主要全数字控制技术)。

其主要发展方向有如下几项: (1)实现高水平的控制。基于电动机和机械模型的控制策略,有矢量控制、磁场控制、直接传矩控制和机械扭振补偿等;基于现代理论的控制策略,有滑模变结构技术、模型参考自适应技术、采用微分几何理论的非线性解耦、鲁棒观察器,在某种指标意义下的最优控制技术和逆奈奎斯特阵列设计方法等;基于智能控制思想的控制策略,有模糊控制、神经元网络、专家系统和各种各样的自优化、自诊断技术等。 (2)开发清洁电能的变流器。所谓清洁电能变流器是指变流器的功率因数为1,网侧和负载侧有尽可能低的谐波分量,以减少对电网的公害和电动机的转矩脉动。对中小容量变流器,提高开关频率的PWM控制是有效的。对大容量变流器,在常规的开关频率下,可改变电路结构和控制方式,实现清洁电能的变换。 (3)缩小装置的尺寸。紧凑型变流器要求功率和控制元件具有高的集成度,其中包括智能化的功率模块、紧凑型的光耦合器、高频率的开关电源,以及采用新型电工材料制造的小体积变压器、电抗器和电容器。功率器件冷却方式的改变(如水冷、蒸发冷却和热管)对缩小装置的尺寸也很有效。 (4)高速度的数字控制。以32位高速微处理器为基础的数字控制模板有足够的能力实现各种控制算法,Windows操作系统的引入使得可自由设计,图形编程的控制技术也有很大的发展。 (5)模拟与计算机辅助设计(CAD)技术。电机模拟器、负载模拟器以及各种CAD软件的引入对变频器的设计和测试提供了强有力的支持。

主要的研究开发项目有如下各项: (1)数字控制的大功率交-交变频器供电的传动设备。 (2)大功率负载换流电流型逆变器供电的传动设备在抽水蓄能电站、大型风机和泵上的推广应用。 (3)电压型GTO逆变器在铁路机车上的推广应

投诉建议

提交

查看更多评论
其他资讯

查看更多

PLC一体机之EK温度修正使用技巧

S7-300CPU存储器介绍及存储卡使用

0.05级超高精度互感器

DC-DC转换器(电源模块)应用指南——外接滤波电容选配

施罗德最小流量阀的应用范围及优点