工控网首页
>

应用设计

>

铝电解电容器的基本概念与应用

铝电解电容器的基本概念与应用

2010/1/12 10:03:00

    1 引言

    1.1电容器的机理与电气功能

    顾名思意,可以作这样的形象理解:所谓电容器(capacitor)就是能够储存电荷的“容器”。只不过这种“容器”是一种特殊的物质——电荷(charge),而且其所存储的正负电荷等量地分布于两块不直接导通的导体板上。至此,我们就可以描述电容器的基本结构:两块导体板(通常为金属板)中间隔以电介质(dielectric)。即构成电容器的基本模型。

    了解了电容器的基本构造后,可能会产生这样的问题:电容从何而来?电容的物理意义为何?电容器的主要参数有哪些?电容器在电子线路中起哪些作用?下面我们将对上述问题一一作出解答。

    众所周知,空间中的一个带电体具有两个电参数:电荷电量Q和电位势U。而这两者的比值(Q/U)表现出一种有趣的规律:这个比值仅与带电体本身的尺寸、形状及其所处的空间环境有关,而与带电体所带电荷的多少无关。也就是说,带电体所带电荷与其电位势的比值表征了带电体及其周围环境所构成的系统的一种固有属性,我们把此比值称为电容量,以C(=Q/U)来表示。电容量也可以理解为带电体(电位势一定的情况下)容纳电荷的能力。

    我们通过两个例子来了解电容量C的计算方法:

    (1)真空中孤立带电球(R=r0)的电容量如何计算?设孤立电荷的电量Q=q,其相对于无穷远处的电位势U=q/(4πε0r0),则其电容量C=Q/U=4πε0r0。从计算结果可以看出,电容量只与带电体的本体尺寸,形状和所处的空间环境有关,而与所带电量无关。

    (2)平行板电容器的电容量计算方法。所谓平行板电容器是指两块相对平行的金属板中间隔以相对介电常数为εr、厚度为d的电介质所构成的电子元件。设平行板电容器储存的电荷Q=q,则正负极板的电荷分别为+q、-q,两极板间的电位差为u。平行板电容器可以看作是两个孤立带电体电容器串联构成。设正极板相对于无穷远处的电位U+=u+,则负极板的电位U-=u+-u。正负极板具有的电容量分别为+q/u+,-q/(u+-u)。两者串联的合成容量1/C=1/(+q/u+)+1/-q/(u+-u)=u/q,

    即C=q/u。由物理学的推导可以得出,u=4πdq/(εrε0S),所以C=εrε0S/4πdq。同样,电容量仅与其结构尺寸有关,而不依赖其带电量的多少。

    电容量(Capacitance)、工作电压(operatingVoltage)、损耗因子(LossFactor)、绝缘电阻(InsulatingResistance)等是标定电容器特性的基本电气参数。电容器的电容量、损耗因子通常以120Hz下数字电桥测定的数值为准;绝缘电阻则是电容器隔离直流作用的数值化表征,希望电容器的绝缘电阻越高越好。表征电容器特性的参数还有:击穿电压(BreakdownVoltage)、容许流通的最大纹波电流(Max.RippleCurrent)、使用温度范围(OperationTemperatureRange)、容量温度系数(TemperatureCoefficient)、频率特性(FrequencyCharacteristics)等。

    电容器在电子线路中的作用一般概括为:通交流、阻直流。电容器通常起滤波、旁路、耦合、去耦、转相等电气作用,是电子线路必不可少的组成部分。在LSIC、VLSIC已经大行其道的今天,电容器作为一种分立式无源元件仍然大量使用于各种功能的电路中,其在电路中所起的重要作用可见一斑。作贮能元件也是电容器的一个重要应用领域,同电池等储能元件相比,电容器可以瞬时充放电,并且充放电电流基本上不受限制,可以为熔焊机、闪光灯等设备提供大功率的瞬时脉冲电流。电容器还常常被用以改善电路的品质因子,如节能灯用电容器。

    1.2电容器的相关计算

    1.2.1电容器的容量

    电容器的静电容量的计算公式可表达为:用字母可表示为:

    其中 K=8.85×10-8μF/cm。

    若干电容器并联,其合成容量等于各个电容器容量之和,即C=C1+C2+……+Cn。电容器并联可以增强其流通纹波电流的能力,扩展其在滤波、旁路电路中的使用。若干电容器串联,其合成容量的倒数等于各个电容器容量的倒数和,即:1/C=1/C1+1/C2+……+1/Cn。电容器并联使用,相应于增大了电介质的厚度,故可以提高其耐压能力,使用在工作电压较高的工作场合。

    1.2.2电容器存储的电能电容器充电至端电压V时,此时再移动dQ=CdV的电荷所作的功为VdQ=CVdV,那么在电容器的整个充电过程中,电容器储存的电能E即可表示为:;在整个充电过程中,电源消耗的电能为QV,所以为电容器充电,电源的能量利用率仅为50%。

    1.2.3充放电时电容器端子的电压与电流变化趋势

    电容器通过定值电阻R充电时,电容器端子的电压、电流变化趋势为:

    电容器通过定值电阻R放电时中,电容器端子的电压、电流变化趋势为:

    1.3电容器的分类

    依据所使用的材料、结构、特性等的不同,电容器的分类也不同。在此,我们主要依据电容器特性原理的不同,将其分为两大类:化学电容器(chemicalcapacitor)和非化学电容器(nonchemicalcapacitor)。

    1.3.1化学电容器(ChemicalCapacitor)

    化学电容器是指采用电解质作为电容器阴极的一类电容器。广义上讲,电解质包括电解液(electrolyte)、二氧化锰(MnO2)、有机半导体TCNQ、导体聚合物(PPy、PEDT)、凝胶电解质PEO等。化学电容器又包含两大类别:电解电容器(electrolyticcapacitor)和超电容器(supercapacitor)。

    电解电容器是指在铝、钽、铌、钛等阀金属(ValveMetal)的表面采用阳极氧化法(AnodicOxidation)生成一薄层氧化物作为电介质,以电解质作为阴极而构成的电容器。电解电容器的阳极通常采用腐蚀箔或者粉体烧结块结构,其主要特点是单位面积的容量很高,在小型大容量化方面有着其它类电容器无可比拟的优势。目前工业化生产的电解电容器主要是铝电解电容器(Aluminiumelectrolyticcapacitor)和钽电解电容器(Tantalumelectrolyticcapacitor)。铝电解电容器以箔式阳极、电解液阴极为主,外观以圆柱形居多;钽电解电容器采用烧结块阳极,阴极采用半导体材料二氧化锰,外形多为片式(chiptype),适应于SMT技术需求的SMD。

    超电容器一般采用活性炭(ActiveCarbon)、二氧化钌(RuO2)、导体聚合物(polymerConductor)等作为阳极,液态电解质作为阴极。超电容器可以获得法拉级的静电容量,有利于化学电容器的超小型化,但是,其缺点是单体(cell)的耐电压有限,采用水系电解液(AqueousElectrolyte),耐电压在1V以下,即便是采用非水系电解液(Nonaqueouselectrolyte),其耐电压一般也不超过3V。确切地说,超电容器是介于电容器和电池(Battery)之间的储能器件,既具有电容器可以快速充放电的特点,又具有电池的储能机理——氧化还原反应(Oxidationreductionreaction)。超电容器也可以分为两类:(1)以活性炭为阳极,以电气双层的机制储存电荷,通常被称作电气双层电容器(ElectricalDoubleLayerCapacitor,EDLC);(2)以二氧化钌或者导体聚合物为阳极,以氧化还原反应的机制存储电荷,通常被称作电化学电容器(ElectrochemicalCapacitor,EC)。

    1.3.2非化学电容器(NonchemicalCapacitor)

    非化学电容器的种类较多,大都以其所选用的电介质命名,如陶瓷电容器、纸介电容器、塑料薄膜电容器、金属化纸介/塑料薄膜电容器、空气电容器、云母电容器、半导体电容器等。

    陶瓷电容器采用钛酸钡、钛酸锶等高介电常数的陶瓷材料作为电介质,在电介质的表面印刷电极浆料,经低温烧结制成。陶瓷电容器的外形以片式居多,也有管形、圆片形等形状。陶瓷电容器的损耗因子很小,谐振频率高,其特性接近理想电容器,缺点是单位体积的容量较小。

    以往的纸介电容器、塑料薄膜电容器多用板状或条状的铝箔作为电极,现在,大多采用<

投诉建议

提交

查看更多评论
其他资讯

查看更多

助力企业恢复“战斗状态”:MyMRO我的万物集·固安捷升级开工场景方案

车规MOSFET技术确保功率开关管的可靠性和强电流处理能力

未来十年, 化工企业应如何提高资源效率及减少运营中的碳足迹?

2023年制造业“开门红”,抢滩大湾区市场锁定DMP工博会

2023钢铁展洽会4月全新起航 将在日照触发更多商机