工控网首页
>

应用设计

>

汽车智能安全系统

汽车智能安全系统

2010/3/17 14:57:00
1 引言

安全带和安全气囊是汽车碰撞事故中最有效的乘员保护设施。据有关数据表明,佩带座椅安全带可以使碰撞事故中乘员伤亡率减少15 %-30 %。安全气囊对驾驶员和乘员的头部、颈部安全再发生正面碰撞时有着十分明显的保护作用。

但是由于实际碰撞事故的复杂多样性,无论是安全带还是安全气囊,其保护作用都有其局限性,而且如使用或设计不当还会带来较大的负面影响。具体表现在:

当小规模事故发生时,气囊对乘员的伤害很有可能超过事故本身。当驾驶员乘坐位置过于靠近方向盘时(out of position,即OOP),安全气囊系统来内部气体发生器约在30 ms内将气袋充满,巨大的冲击力将对离气囊组件很近并处于膨胀方向的乘员的头部和颈部造成严重伤害;按标准位置乘员设计的气囊系统,极有可能对离位乘员和小身材妇女甚至儿童造成伤害;对于大尺寸乘员来说,碰撞中常常会将气囊压扁后与转向盘碰撞,也就是说普通气囊难以对大尺寸乘员起到应有的防护作用。

就此摆在车在安全系统设计人员面前的问题就是:怎样开发出一套针对个人而非针对标准的安全系统,这种系统要能够对乘员情况进行实时监控,并通过监控得到的参数在碰撞过程中控制安全系统。

开发新型智能安全系统的重要性毋庸置疑。据有关数据统计,到2005年,35%的新型车将装备智能人员识别系统。按照美国的标准,到了2006年,所有的都必须装备此类系统。可以毫不犹豫地说,开发汽车智能安全系统在今后将具有广阔的市场前景。

MOTOROLA公司所开发的传感器和微处理器在汽车控制方面具有很高的性能价格比。而本次参赛所采用的传感器是该公司最新开发的电场成像器件MC33794,该芯片非常适合用于测量和人有关的物理参数(因为人体本身主要由水组成,而水里的金属元素是人体成为具有常电解特性的良导体。)所以我们以该传感器为核心,优化了传感器安排,重新设计了该智能安全系统。此系统使用传感器和高性能MCU来探测驾驶员的体型、位置和重量并决定安全带和安全气囊的工作状态。

2 设计概述

2.1 为什么开发智能安全系统?

首先,据National Highway Traffic Safety administration(NHTSA)的调查, 大多数应安全气囊受伤的乘员(aggressive air bag)都是由于不恰当的乘坐位置。新的智能安全系统通过MC33794电场成像芯片,实时监控驾驶员的乘坐位置,在碰撞发生时,自动调节安全带矫正乘员乘坐位置。若乘员是乘坐位置不当的儿童,为了避免安全气囊伤害乘员,气囊将不展开。

其次,传统的安全带气囊系统是建立在三种用于汽车碰撞的人模(Hydrid3)之上的:

(1) 50%人模: 代表平均身高1.77米和体重86公斤
(2) 95%人模: 包括95%的人的身高1.88米和体重108公斤.
(3) 5%人模: 代表5%的矮小身材1.48米和体重56公斤.

该统计未考虑体重小于5%人模的儿童。传统的安全气囊时在打开时会对大多数的儿童颈部造成巨大压强,根据NHTSA 2003.1.1的测试报告,在242起由安全气囊引起的受致命伤害的模型中,119起是儿童模型。同时大多数的在交通事故中死亡的儿童颈部都因使用安全气囊而对颈部造成致命损伤。与之相对的是,大体型的乘员(提醒超过95%人模)在事故中又常常压扁安全气囊而撞到方向盘。

针对以上考虑,新开发的智能的安全系统能自动识别成员的体型,并将体型作为影响气囊控制参数的一个因子,实现个人化的安全气囊控制。

2.2系统的功能及原理

本次设计的目标是开发一种通用的不限车型的智能安全系统。该系统能既能用作驾驶位安全汽囊控制系统,也能安装在乘客位控制乘客位安全汽囊系统。利用单片机精确地控制安全气囊的开放和安全带的收紧程度,以此来避免因为安全气囊的非必要或不充分打开而引起的人员伤亡。

本系统并不直接控制安全气囊与安全带,而是作为CAN总线内的一个节点,向实际控制安全气囊和安全带的微控制器发出部分控制参数。借以实现安全系统的智能化。

2.2.1 系统应具备的功能:

1.针对安全气囊的功能设计

⑴智能气囊开关控制(Automatic Air Bag On-Off Switches)。关键因素是碰撞发生时的加速度。在国家鉴定试验中,碰撞瞬时的加速度约为-40g;当由碰撞造成的减速度小于40g时气囊不会打开。另外,考虑到气囊并非针对儿童设计,当汽车发生碰撞时气囊有可能对儿童造成致命伤害,故当乘员乘坐姿势不当的儿童(体重小于30公斤)时,气囊将永远不会打开。(建议使用带有儿童安全带的反向安全座位)。

⑵双气囊喷射口多级延时喷射

为了能够实现在发生汽车碰撞时,不同体型的人受到不同膨胀程度的气囊的保护, 我们采用了双气囊喷射口模型。并且通过控制每个喷射口相对碰撞时刻的延时长短来控制气囊开始膨胀的时刻及最终膨胀程度。

采用上述的功能设计是因为经研究表明,并非在汽车发生碰撞之后立即打开气囊就能取得最好的保护效果,而是要经过一段延时(典型值10ms)。延时具体值则取决于碰撞导致的汽车加速度和乘员体型的大小。

2.安全带预调整。

在发生碰撞时,汽车安全智能系统通过采样有电场成像器件检测的各电极电压值来获取乘员的乘坐姿势与位置(这是本次大赛建议使用芯片MC33794的一大功能),若乘客身体过于接近方向盘则提前收紧安全带,减小OOP(out of position)程度,进一步保证乘客安全。

2.2.2工作原理

1.工作原理图

2.系统原理

OOP的概念:即out of position,是指驾驶员在驾驶时偏离正确的坐姿而靠近方向盘的情况。本方案中多次用到这一概念,故在此强调说明。

系统组成如上图一所示。驾驶员坐上座位时,电场成像器件MC33794则通过查询循环不断检测驾驶舱内电场变化,得到驾驶员实时的位置/坐姿参数(由传感器各电极电压匹配乘员姿势的示意图如右边所示);放在座位下的压强传感器将驾驶员对座位的压强参数传给MCU,;同时安全带传感器(本系统简化为一个开关电路)则负责将驾驶员是否系上安全带的信号传给MCU。

当汽车速度急速下降时,若加速度大于中断阀值(即使得单片机进入中断服务程序的加速度),则向MCU发出外部中断,MCU将加速度传感器得到的模拟量A/D转化后判断该加速度是否超过安全气囊的开启阀值。若已超过,则将各传感器得到的参数转变为查表地址(详细的阐述见第四部分软件描述),进而查表得到气囊参数受传感器参数。

上面所提到的中断阀值与气囊开启阀值是两个不同的概念,产生中断的加速度阀值处于由于轻微碰撞应起的加速度和由于急刹车引起的加速度之间(大约20g)。而气囊开启加速度则大于这个值,根据国家规定,碰撞瞬时的加速度阀值为-40g左右。

气囊最终喷出气体体积大小由是由一个还是两个喷口喷气以及喷气延时长短决定;而喷气口的数量以及喷气延时长短又由经过了A/D转化的各传感器测得的参数决定。

下面列出的是由传感器得到的参数与气囊控制信号之间的关系。具体的值取决于采用的汽车模型与碰撞模型,两喷口开启的延时时间典型值为:12ms,20ms,30ms (50 mile/hour)。

气囊膨胀体积

系安全带:随着驾驶员的体重/体型的增大气囊的膨胀体积将增大;
未系安全带:在乘员体型相同前提下,气囊体积较系上安全带的情况大。气囊开启加速度阀值

由于未佩带安全带的乘员比佩带安全带的乘员所需要的安全气囊提供保护时的速度更低,因此对未佩带安全带的乘员气囊打开的减速度阀值较小。

喷气延时长短

随着由碰撞造成的减速度(碰撞严重程度)的增大,气囊口的开放与延迟如下:

⑴对于小体型的乘员

⑵对于中等体型的乘员

⑶对于大体型的乘员

3 硬件描述

车载智能安全系统的硬件框图如下

3.1 MCU 模块

系统微处理器选择MC68HC908GZ16,它的框图如下:

投诉建议

提交

查看更多评论
其他资讯

查看更多

助力企业恢复“战斗状态”:MyMRO我的万物集·固安捷升级开工场景方案

车规MOSFET技术确保功率开关管的可靠性和强电流处理能力

未来十年, 化工企业应如何提高资源效率及减少运营中的碳足迹?

2023年制造业“开门红”,抢滩大湾区市场锁定DMP工博会

2023钢铁展洽会4月全新起航 将在日照触发更多商机