工控网首页
>

应用设计

>

基于Simulink的三相桥式全控整流电路的设计与仿真

基于Simulink的三相桥式全控整流电路的设计与仿真

2015/10/30 9:56:06

摘要:三相桥式全控整流电路在现代电力电子技术中具有很重要的作用和很广泛的应用。本文通过对三相桥式全控整流电路理论分析的基础上,结合全控整流电路理论基础,采用Matlab的仿真工具Simulink建立了基于Simulink的三相桥式全控整流电路的仿真模型,并对其带电阻负载时的工作情况进行了仿真分析与研究。通过仿真分析也验证了本文所设计建模型的正确性。

关键词:全控整流电路;Simulink仿真;建模;电力电子

中途分类号:TP 9 文献标识码:B

0 前言

电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。

电能的传输中,直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。

随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路,由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。

1电路原理分析

晶闸管按从1至6的顺序导通,为此将晶闸管按图1所示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。编号如图1所示,晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。

图1 主电路原理图

其工作特点是任何时刻都有不同组别的两只晶闸管同时导通,构成电流通路,因此为保证电路启动或电流断续后能正常导通,必须对不同组别应到导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于π/3的宽脉冲。宽脉冲触发要求触发功率大,易使脉冲变压器饱和,所以可以采用脉冲列代替双窄脉冲;每隔π/3换相一次,换相过程在共阴极组和共阳极组轮流进行,但只在同一组别中换相。接线图中晶闸管的编号方法使每个周期内6个管子的组合导通顺序是VT1-VT2-VT3-VT4-VT5-VT6;共阴极组T1,T3,T5的脉冲依次相差2π/3;同一相的上下两个桥臂,即VT1和VT4,VT3和VT6,VT5和VT2的脉冲相差π,给分析带来了方便;当α=O时,输出电压Ud一周期内的波形是6个线电压的包络线。所以输出脉动直流电压频率是电源频率的6倍,比三相半波电路高l倍,脉动减小,而且每次脉动的波形都一样,故该电路又可称为6脉动整流电路。同理,三相半波整流电路称为3脉动整流电路。α>0时,Ud的波形出现缺口,随着α角的增大,缺口增大,输出电压平均值降低。当α=2π/3时,输出电压为零,所以电阻性负载时,α的移相范围是O~2π/3;当O≤α≤π/3时,电流连续,每个晶闸管导通2π/3;当π/3≤α≤2π/3时,电流断续,个晶闸管导通小于2π/3。23α=π/3是电阻性负载电流连续和断续的分界点。

2 电路设计

根据三相桥式全控整流电路的原理可以利用Simulink内的模块建立仿真模型如图2所示,设置三个交流电压源Va,Vb,Vc相位角依次相差120�,得到整流桥的三相电源。用Universal Bridge构成整流桥,实现交流电压到直流电压的转换。Synchronized 6-Pulse Generator产生整流桥的触发脉冲。

提取电路与器件模块,组成电路的主要元件有三相交流电源,晶闸管,RLC负载等。三相整流电路模型主要元器件如表1所示。

表1 三相整流电路模型主要元器件

元器件名称

提取元器件路径

交流电源

Electricalsource/ACvoltagesource

三相电压-电流测量单元

Measurements/Three-phaseV-Imeasurement

三相晶闸管整流器

Extralibrary/three-phaselibrary/6-pulsethyristorbridge

RLC负载

Elements/seriesRLCbridge

6脉冲发生器

Extralibrary/controlblocks/synchronized6-pulsegenerator

触发角设定

Simulink/sources/constans

三相电源分别设置为Va:220V,相位角为0度,Vb:220V,相位角为-120度,Vc:220V,相位角为+120度,频率都设为50Hz。脉冲发生器频率设为50,宽度为10。Universal Bridge中桥臂设为3。负载电阻为10欧,电感为0.01H。图2是三相桥式全控整流电路仿真模型。

图2 三相桥式全控整流电路仿真模型

3 仿真

1) 电源参数设置:三相电源的电压峰值为220V×

,可表示为“220*sqrt(2)”,频率为50Hz,相位分别为0、-120�、-240�。

2)三相晶闸管整流器参数设置:使用默认值。

3)6脉冲发生器设置:频率为50Hz,脉冲宽度取1�,取双脉冲触发方式。

4) 触发角设置:可以根据需要将alph设置为30�、60�、90�。

5)采用变步长算法ode23tb(stiff/TR.BDF2)。

6)负载可以根据需要设成纯电阻、纯电感、阻感等,本次仿真中为电阻负载R=10Ω,阻感负载R=10Ω,L=1H 。

设置仿真时间0.06s,数值算法采用ode23tb(stiff/TR.BDF2)。启动仿真,根据三相桥式全控整流电路的原理图,对不同的触发角α会影响输出电压进行仿真。从以下仿真波形图可知改变不同的控制角,输出电压在发生不同的变化。

图3 三相桥式全控整流电路电阻负载a=30�时的波形

图4 三相桥式全控整流电路电阻负载a=60�时的波形

图5 三相桥式全控整流电路电阻负载a=90�时的波形

4 结论

对于纯电阻性负载,当触发角小于等于90�时,Ud波形均为正值,直流电流Id与Ud成正比,并且电阻为10欧姆,所以直流电流波形和直流电压波形一样。随着触发角增大,在电压反向后管子即关断,所以晶闸管的正向导通时间减少,对应着输出平均电压逐渐减小,并且当触发角大于60�后Ud波形出现断续。而随着触发角的持续增大,输出电压急剧减小,最后在120�时几乎趋近于0。对于晶闸管来说,在整流工作状态下其所承受的为反向阻断电压。移相范围为0~120。

投诉建议

提交

查看更多评论
其他资讯

查看更多

助力企业恢复“战斗状态”:MyMRO我的万物集·固安捷升级开工场景方案

车规MOSFET技术确保功率开关管的可靠性和强电流处理能力

未来十年, 化工企业应如何提高资源效率及减少运营中的碳足迹?

2023年制造业“开门红”,抢滩大湾区市场锁定DMP工博会

2023钢铁展洽会4月全新起航 将在日照触发更多商机