新闻中心

当前页面: 首页 >新闻中心 >业界动态 >工业大数据的概念特征及未来发展   

工业大数据的概念特征及未来发展   

供稿:中国工控网 2016/9/27 15:14:00

0 人气:261

  工业大数据的概念特征及未来发展

  随着美国工业互联网和德国工业4.0等制造智能化转型战略的相继实施,工业大数据日益成为全球制造业挖掘价值、推动变革的主要抓手。

  1、工业大数据概念与特征

  工业数据是指在工业领域信息化应用中所产生的数据。工业大数据是基于工业数据,运用先进大数据技术,贯穿于工业的设计、工艺、生产、管理、服务等各个环节,使工业系统具备描述、诊断、预测、决策、控制等智能化功能的模式和结果。工业数据从来源上主要分为信息管理系统数据、机器设备数据和外部数据。信息管理系统数据是指传统工业自动化控制与信息化系统中产生的数据,如ERP、MES等。机器设备数据是来源于工业生产线设备、机器、产品等方面的数据,多由传感器、设备仪器仪表进行采集产生。外部数据是指来源于工厂外部的数据,主要包括来自互联网的市场、环境、客户、政府、供应链等外部环境的信息和数据。

  工业大数据具有五大特征。一是数据体量大,主要表现在随着设备数据和互联网数据的涌入,工业数据的存储量将达到EB级别。二是数据分布广泛,分布于机器设备、工业产品、管理系统、互联网等。三是结构复杂,有结构化、半结构化和非结构化等不同类型。四是数据速度需求多样化,有要求实时、半实时和离线三种,生产层级要求实时性,需要达到毫秒级别;管理层级实时性要求不高。五是数据价值不均匀,20%的数据具有80%的价值密度(如产品图纸、试验分析、加工工艺);80%的数据密度只有20%,需要分析挖掘(如工况情况、图片数据)。

  与互联网大数据相比,工业大数据具有自身特点:一是多源性获取,数据分散,非结构化数据比例大;二是数据蕴含信息复杂,关联性强;三是持续采集,具有鲜明的动态时空特性;四是采集、存贮、处理实时性要求高;五是与具体工业领域密切相关。

  先进制造企业基于工业大数据的应用,把产品、机器、资源和人有机结合在一起,推动制造业向基于大数据分析与应用基础上的智能化转型。工业大数据能够促进形成企业和消费者之间的信息主动反馈机制,为完善以客户需求为导向的产品全生命周期信息集成和跟踪服务、建立以服务为核心的整体解决方案提供可行路径,将大大提升产品服务价值,为制造业转型升级开辟了新途径。

  2、工业大数据发展态势

  随着信息化和工业化融合,工业企业生产信息数字化,积累大量数据。工业网络、数据采集、集成、计算和分析技术在工业领域的应用,促使工业数据发挥巨大价值。工业大数据越来越受到工业企业的关注。目前工业大数据发展态势有三个,一是已从理念转向实践,二是工业大数据成为云计算的价值体现,三是工业大数据孕育丰富的工业应用生态。

  随着信息化和工业化融合的不断推进和大数据采集、集成、计算和分析技术的发展,很多工业企业已经进入工业大数据实践阶段。大型工业企业在应用方面走在前列。如唐山钢铁集团,通过引入国际最先进的生产线,已实现数据实时采集,深度挖掘工业大数据价值,实现生产实时监测、生产排程、产品质量管理、能源管控等。

  3、工业大数据采集及应用管理平台及功能实现

  数网星-远程数据采集及应用平台专注解决设备远程调试和运维需求,帮助客户实现远程数据采集及设备运维,大数据应用和分析功能。更精准及时的数据采集,更快速稳定的数据传输,更多样灵活的使用方式,更智能专业的大数据决策,更低的投资成本,更多的数据财富。

  产品营销:大数据分析结果为制造企业提供针对性推销、定向研发、智能维保等服务。

  设备远程故障诊断分析:大数据预测设备未来可能出现故障的时间,提供避免风险的解决方案,消除设备故障停机给客户带来的损失。客户体验:在移动端建立企业宣传平台,以场景化方式让客户参与产品的认知,增加品牌的传播效果。

  技术创新:借助平台的专家经验共享、智能决策库的建立,提高运维领域的装备管理水平,降低行业运营成本。

  节约效能:通过数据集的切分和规律查找,帮助找到最优化的数据集,实现人员投入及控制过程的节能提效。


审核编辑()
更多内容请访问 中国工控网(http://www.gongkong.com)

手机扫描二维码分享本页

工控网APP下载安装

工控速派APP下载安装

 

我来评价

评价:
一般