工控网首页
>

应用设计

>

安邦信高压变频器在恒压供水上的应用

安邦信高压变频器在恒压供水上的应用

引言 大中型自来水厂的水泵驱动电机一般是由高压电机驱动,其供水压力与流量的调节大多采用传统的方式,通过控制水泵的运行台数,辅助于阀门的开度变化的方式进行调节,由于供水时间相对集中,一日内的负荷变化较大,特别是在午夜与凌晨的时段,产生大马拉小车的现象,这种情况在春冬两季更为明显,既浪费能源,又使供水管网的压力波动。为了解决这一问题,平顶山煤炭集团自来水厂领域决定选用安邦信的AMB-HV1型高压变频器,对原有的水泵驱动电机进行变频节能改造。 系统概况 原高压电机以工频电源驱动时,电机定速运行,只能靠水泵出口侧的阀门来调节供水流量,不仅浪费能源,而且会产生“水锤效应”和“憋泵”现象,对此,我们采用安邦信高压变频器内置PID功能进行节能改造。 PID功能介绍:水泵变频调速是一个压力闭环控制系统,设定水泵出工侧压力参数为控制对象,当实际压力与设定压力发生偏差±H时,高压变频器则根据压力传感器反馈的信号,自动调节变频器的输出频率与电压,从而改变水泵驱动电机的转速,使水泵出口侧的压力维持恒定。 风机泵类负载变频调速的节能原理 风机泵类负载一般是通过改变阀门挡板的开度进行流量、压力调节的。图-1为泵(风机)扬程流量特性曲线(H-Q)图。在阀门控制的方式下,当系统流量从Qmax减少到Q1时,必须相应地关小阀门。这时,阀门的阻力变大,流体的节流损失增加,流道的阻力线从A0到A2。
泵(或风机)运行的工况点,从b点移到c点,扬程从H0上升到H2,而实际需要的工况点为d点。 根据泵(风机)的功率计算工式: P=ρgQH/1000η 式中: P—水泵使用工况轴功率(KW) ρ—输出介质的密度(kg/m3) Q—使用工况点的流量(m3/s) g—动力加速度(m/s2) η—使用工况点泵的效率。 可求出运行在c点和d点泵的轴功率分别为: Pc=PgQ1H2/1000η; Pd=PgQ1H1/1000η; 两者之差为ΔP=Pc-Pd=PgQ(H2-H1)/1000η 上式说明,用阀门控制流量时,有ΔP的功率被损耗浪费掉了。而且,随着阀门不断关小,这个损耗还要增加。 用变频调速控制时,当流量从Qmax减少到Q,由于阀门的开度没有变化,管网的阻力曲线不变,泵的特性曲线随转速由n0变化到n1。泵(风机)运行的工况点,则从b点移到d点,扬程从H0下降到H1,而用转速控制时,根据流量Q,扬程H,功率P和转速N之间的关系: Q1/Q2=n1/n2; H1/H2=(n1/n2)2; P1/P2=(n1/n2)3 可知:流量Q与转速N的一次方成正比;扬程H与与转速N成平方比;而功率P与转速N成立方比,若转速下降20%,则轴功率对应下降49%,由此可见,采用变频调速可以大幅降低电机的电耗,节省能源,降低企业成本。 高压变频器的选型: 高压变频器是价格不菲的传动控制设备。因此,我们在设备的选型上要慎之又慎。国际知名的电气公司诸如:ABB,西门子,富士都在生产6KV系列高压变频器,而且在国内企业均有成功应用的例子,但它们的产品一般都售价高昂,同时在技术支持及售后服务方面不及国内便捷。近年,国内企业生产的高压变频器,经不断完善,其技术与十分成熟。综合产品价格、售后服务、设备的可靠性诸方面因素,最终我们选用了AMB-HV1型变频器。AMB-HV1型高压变频器采用了工业控制领域已广泛应用的成熟,可靠技术,诸如移相整流技术,H桥单相逆变技术等,因而具有很高的可靠性。 安邦信高压变频器与国外某品高压变频器性能对照表
AMB-HV1型高压变频器的基本原理与技术特点: 电源侧与逆变功率单元之间,设置了移相整流变压器,移相变压器边各绕阻之间互相错开一定的电角度,给逆变功率单元供电,各功率与移相变压器连线如图-2所示。 移相变压器的多重二次绕组对电网而言,类同多相负载,它即为逆变功率单元的电压叠加提供了条件,又解决了电源网侧的谐波问题。对AMB-HV1型高压变频器而言,每相有6个不同的相位组,形成了36脉冲的二极管整流电路。因此,它的基波电流值高,理论上讲35次以下的谐波可以消除电流的畸变率THPi<190.
AMB-HV1型高压变频器采用载波移相技术,各功率单元在主控CPU发生的控制电平下,依次导通关断。各功率单元输出的1,0,-1电平叠加后,形成了频率电压可调的多重化阶梯形,得到了几近完美的正弦波形。逆变功率单元由整流电路,电解电容滤波电路,H桥逆变路构成,其基本原理如图-3所示。 各功率单元的输入电压为590V,功率模块为低饱合压降,耐压为1700V的IGBT,功率单元与控CPU板之间监控电平由光纤传递,使布线的杂散电感减至最少,杜绝噪声损耗。
因为每相的逆变功率单元按一定的相位差串联,其输出的电压波形是多段阶梯波,且等效的开关频率很高。因此,它没有通用变频器6脉波逆变电路产生的6K±1的高次谐波产生的转矩脉动问题,避免了谐波电流引起的电机发热,杜绝了共模电压与dv/dt应力对电机与电缆的损害。因此,系统不需要再配置电抗器,滤波器。 实际使用情况: 系统采用2台水泵驱动电机共用一台高压变频器的形式,高压变频器分别控制2台水泵驱动电机的启动与调速及工频/变频的切换。主回路如图-4所示。 高压电机铭牌标定参数 额定电压:UN=6KV;额定电压IN=27A;额定转速NN=1475r/min;额定功率PN=220KW
电机启动平稳,消除了刺耳的启动噪音。 原高压电机工频启动时,由于起动时间短,起动冲击电流大(IN5~7倍),电机与水泵振动较大,会产生刺耳的噪音。使用高压变频器后,这些现象彻底消除。使用变频器后,电机启动时,电机的转速在高压变频器设定的范围内,从零开如平缓上升,电机电流亦随之平稳变化,电流表的指针平稳偏转,杜绝了工频启动时对电网的冲击。 电机启动时,水泵出口侧阀门关闭,变频器输出超始频率为2Hz,电机相电流为0.6A,1分钟以后,输出频率为43Hz,电机的相电流为18A。未采用变频器时,每当用水量大,水压低时,值班人员要及时开大水泵出口侧阀门,加大出水量;而当用水量小,水压电时,值班操作人员要及时关小水泵出口侧阀门,减小出水量。采用变频器后,网管水压通过压力闭环控制系统自动控制,供水压力始终保持在0.45MPa的设定压力上。而且,泵的启停台数由PLC根据工况情况自动控制,使系统由人力控制的方式上升到自动化控制的台阶。 节省电能降低企业设备运行成本 原高压电机以工频电源驱动时,电机定速运行,只能靠水泵出口侧的阀门来调节供水流量,不仅浪费能源,而且会产生“水锤效应”和“憋泵”现象,使用高压变频器,不仅解决了这些问题,而且可以根据供水管网所需流量,自动调节电机转速,从而节省电能,减少企业供水产生成本。解决了“水锤效应”“憋泵”水压忽高忽低的问题,减少管网爆管,水的“跑、冒、滴、漏”,可见使用变频器也利于节水。 表2为30天时内,工频与变频时电机的对照表,该表说明使用了变频器后水泵的电耗降低了30%,以当地电价0.55元/KWH计算,每月可节省27000元左右。
原高压电机未装置功率因数补偿电容,盘面上的功率因数表的读数在0.85的刻度上,使用高压变频器后,因高压逆变功率单元内均装置有大的电解电容,相当于在电网侧与机之间加入了一级容性隔离。使整个系数的效率大为提高。现在功率表的读数在0.95以上。可见,高压变频器不仅调频、调压、调速,软起动的功能,而且具有功率因数补偿的功能。 结束语: 我们这次装置AMB-HV1系列高压变频器一次调试成功,说明安邦信的高压变频器具有很高的可靠性,高压变频器的成功运行,不仅为企业带来了节能效益,减少了设备维修,而且提高了供水系统的自动化水平。可以说高压变频调速为企业节能降耗,提高经济效益开掘了新途径。 参考文献:1、安邦信高压变频器AMB——HVI使用说明书 深圳市安邦信电子有限公司 作者简介: 张书臣(47岁)就职于平顶山煤业集团供水总厂,总工程师,主要从事高压变频器在水工业中的应用及水工业的节能应用 王旭(49岁),东北大学教授,博士生导师,长期从事高低压变频调速技术的研究,现为中国自动化学会电气自动化委员。 联系地址:沈阳市和平区文化区文化路 东北大学127信箱 联系电话:02423883746 联系人:王旭
投诉建议

提交

查看更多评论
其他资讯

查看更多

东土科技应邀出席2015第三届工业信息化及信息安全发展论坛

东土科技Agate7000系列获得信息技术产品安全分级EAL3级评估证书

ISPCS2015早鸟报名抽奖结果公布

关注ISPCS 2015官微,赢取Apple Watch大奖,ISPCS 2015火热报名中!

东土科技即将参加第四届全国油气储运科技创新与信息化技术交流大会