工控网首页
>

应用设计

>

变频调速技术在塔机起升机构中的应用探讨

变频调速技术在塔机起升机构中的应用探讨

2007/8/21 16:05:00
1 概 述   随着我国建筑业的不断发展,建筑施工机械化水平的不断提高,对塔机的制造质量和整机技术水平的要求也越来越高。塔机的各个传动机构所采用的方式、控制系统的技术水平、用户的可操作性和可维护性基本上就体现了整个塔机的技术水平和档次。而在这几个机构中,最为重要也是最具有技术代表性的是起升机构,它控制功率最大、调速范围最宽、出故障后的维修难度也最大。而且该系统在变速过程所产生的机械冲击的大小将直接影响塔机结构件的疲劳损伤程度。   为了改进其性能,国内各主机生产商在起升机构的调速控制技术上已花了许多工夫,得到了长足的进步。从整体上看,绝大多数采用的是传统的单电机传动,以带涡流制动器的绕线式电机和多极电机调速的方案为主。这些传统的调速方案,要想达到较宽的调速范围,其途径不外乎设计制造大功率、宽调速范围的非标电机,如:采用带涡流制动器的多极绕线式电机或制作大极差的多速电机等。由于塔机起升机构所需要的较高调速要求不但给电机生产厂商带来了较多的质量控制难题,而且也增加了控制回路和电机的制造成本,降低了系统可靠性。更有甚者,随着用户对塔机的起吊能力要求越来越大,传统控制方式已经越来越感觉到力不从心,不论是上述技术的可实现性,其制造成本以及使用性能等方面也存在一些问题。所以,我们不得不寻求更理想的新的调速控制技术。   鉴于以上的原因,国内外的专业生产商在塔机的起升调速方式上进行了较多的新技术应用尝试,比如:采用多极电机的调压调速,引进变频调速等。逐渐地,随着变频技术的不断发展,不断地被人们认识,它以绝对的优势超越了其他的任何调速方案,其优点数不胜数,如:零速抱闸,对制动器无磨损;任意低的就位速度,可用于精确吊装;速度的平滑过渡,对机构和结构件无冲击,提高了塔机的运行安全性;极低的起动电流,减轻了用户电网扩容的负担;几乎任意宽的调速范围,提高了塔机的工作效率;节能的调速方式,减少了系统运行能耗;单速的鼠笼电动机保证了机构的运行可靠性厖。正是因为这些明显的特点和优势,国外的塔机制造商所推出的新一代塔机的起升机构也大多采用变频调速方案,如POTAIN,LIEBHERR等世界著名公司。同时我们认为,随着变频器价格的不断降低,可靠性不断提高,变频技术一定能在塔机上得到广泛应用,这将对产品的安全运行和减少运行能耗都有重要的意义。为了普及变频技术,加深对变频调速方案的了解,本文将对变频技术在塔机起升机构上的应用作一探讨。 2 常规变频起升机构 2.1 结构介绍   变频调速技术在塔机各传动机构的应用在我国已经有近10年的时间,虽然取得了一些成功的应用经验,并且也有不少的变频起升机构现在正在工地正常运行,但与其他行业相比,变频调速技术在塔机上的应用还远远未达到应有的程度,其中有成本的原因,也有技术的原因。   现在的变频起升机构其电气控制原理和结构形式大多如图1和图2所示:   它基本代表了国内和国外目前所采用的典型方案,从技术上来讲,大同小异,不同点在于:   ⑴变频器的品牌不同,其采用的控制回路不同;   ⑵系统是开环(不带PG)或者是闭环(带PG)   机械结构的形式的不一样:L型布置、п型布置或一字型布置等;   ⑷减速机的类型不一样,如:圆柱齿轮减速机或行星减速机;是定速比或可变速比等。   就传动控制技术而言,以上所述差异并未涉及控制方式的改变,均为采用一台变频器控制一台电动机进行调速的典型模式,也可称其为常规变频起升机构。在所有的这些常规变频机构中, LIEBHERR公司在EC-H型塔机上装配的变频起升机构的特点最为突出,它采用250V电动机和与之匹配的变频器,配置可变速比的减速机,L型布置。该方案具备较好的起升速度特性,其缺点是系统成本高,而且部件通用性差。 2.2 常规变频起升机构的设计要点   ⑴.电动机极数和功率的校核   当起升机构的基本参数(如:最大起重量、最高工作速度等)给定后,就要对电动机的极数和功率进行确定和计算,其设计要点是:   a.电动机输出转速应小于3000转/分(由减速机输入级的工作转速限制);   b.系统最高工作频率应小于100Hz(频率越高,电动机的损耗功率就越大,将破坏恒功率特性,起吊能力大幅度降低而无实际应用价值);   c.电动机额定转矩用于校核最大起重量(考虑总传动比、效率、倍率等);   d.电动机的额定功率用于校核高速时的起重量(考虑总传动比、效率、倍率等,如果频率接近100Hz,应考虑有效功率降低10~15%)。   在选择电机功率时,应参考图3给出的功率损失图。根据以上的条件就能基本确定减速机的减速比与电动机功率和极数。   ⑵电控系统的设计 a.变频器的选取   当系统的电动机确定后,就可着手进行控制系统的设计。首先是变频器的选型。现在市场上的国内外变频器品牌不少,控制水平和可靠性差别较大,技术上大体可分为V/F控制、矢量控制和DTC直接转矩控制三种。用于塔机的起升机构,建议最好选用具有矢量控制功能或者是具有DTC直接转矩控制功能的变频器,这样的变频器品牌较多,设计者可根据自己的熟悉程度、技术支持力度、其他行业厂的使用情况等因素来选择。   由于变频器品牌的不同,相同功率下变频器的过载能力和额定电流值也不完全一致。所以,选择变频器容量时,不单要看额定功率的大小,还要校核额定工作电流是否大于或者等于电动机的额定电流,一般的经验是选择变频器的功率大于电动机功率10~30%左右。 b.能耗电阻的选取   作为起重用变频系统,其设计的重点在于电动机处于回馈制动状态下的系统可靠性,因为这种系统出故障往往都发生在重物下降时的工况,如溜钩、超速、过压等。也就是说重物下降工况时变频系统的性能好坏将直接影响整个起升机构能否安全运行。这就要求设计人员清楚地了解变频传动系统的回馈工作过程,才能做到心中有数。   大部分变频器的产品说明中,对如何选择能耗电阻的电阻值和功率并没有非常清楚的描述,而且往往按其推荐的标准配置并不能完全满足起重工况的要求,同时有关这方面论述的文章也不多见,所以在变频起重控制系统的设计中,电阻参数选择显得有些混乱。本文将对电机工作在回馈制动状态时系统的工作机理进行定性的分析,读者可以通过这些分析进一步得到有关电阻参数的计算方法。   ①电阻值的选取   基本可以按变频器样本给出的参数确定,基本原则是,考虑直流回路的电压(重物下降工况时将超过600VDC)情况下,电阻上的电流不超过变频器的额定电流。   ②电阻功率的选取   要准确地选择电阻的功率是非常重要的,若选择太大,会增加系统成本,太小就会造成运行的不可靠。但要合理准确地选择能耗电阻的功率是一个较烦琐的事,影响该参数的因素较多,如:电机功率大小、减速机反向效率、下降运行时间长短、负加速度的大小、减速运行时间以及传动部件的转动惯量等都会影响到电阻功率的选取。所以,我们得首先从分析系统在下降工况的工作过程,从而得到电阻功率的确定方法。  图4表示了变频系统在回馈制动状态下的功率传递过程。   从图4中可以看出,重物的下降功率是经“传动部件”、“电动机”(此时处于发电状态)、变频器内的反向整流回路再由制动单元而传递到“电阻R”上的,如果传动环节的反向效率越低,电阻上消耗的功率就越小。 于是有:   “电阻R”发热消耗功率+传递路径上消耗的功率=重物下降的功率   可以用图5来表示起重变频系统各个基本参数在下降减速过程中的变化状况。   进一步还可得到电阻消耗功率P的表达式:   在匀速下降时稳态功耗:   Pe = ωm×Me×δ ①   式中:δ是传动系统的反向效率   减速时的峰值功耗:   Pm = Pe+δ×J×(ωm-ωd)/Ta ②   式中:J是传动系统的转动惯量   结合图5、式①和式②有:   a.当起升机构运行在额定功率状态并高速下降时,如果此时给出减速指令,在减速的初期,电阻的消耗功率将达到最大值;   b.过短的减速时间,将造成在电阻上的消耗功率峰值上升;   c.系统的转动惯量和载荷越大,减速时的制动转矩就越高,也会造成在电阻上消耗功率的峰值上升;   d.当传动系统的机械效率越低,电阻消耗功率也越低。   可见,要准确地计算电阻消耗功率,就必须知道传动系统中各个部件的转动惯量、减速点对应的起始工作速度和结束工作速度、减速过程的时间长短以及系统载荷大小等。要确定这些参数的精确值,在系统设计初期是有一定难度的,其一,在产品未完成前,无法精确测量或计算各传动部件的转动惯量;其二,在实际使用中,系统的减速特征是会随现场的需要而改变的。所以大多情况下,电阻功率都未作严格计算。经验的取值一般是电机功率的40~70%之间,减速机的反向效率较低时,可以选用较小的电阻功率。   只要充分了解了变频系统的减速过程的工作状态,就可以根据所设计系统的实际工作表现来修正电阻参数。   c.控制方案的确定   首先是系统采用开环或闭环控制的选择,笔者认为,一般的塔机起升机构可以采用开环控制方式,那些对速度控制精度要求较高的情况才要考虑闭环控制。如果要构成闭环系统,一定要有PG(编码器)、检测回路和连接线。这些环节加大了安装的复杂性;增加了系统成本;更重要的是降低了系统的可靠性,因为在闭环系统中,反馈回路任何细小的差错可能造成系统紊乱。   其次是速度给定方式的选取,绝大多数的变频器都有多种速度输入方式,如多级开关量输入方式和模拟量给定方式,不少品牌的变频器还具备有总线通信接口。对于常规变频起升机构,大多采用开关量作为速度给定,不同在于是采用PLC还是继电逻辑控制。笔者认为,最为简洁的系统结构应该是由PLC与变频器通信接口传送速度与控制指令,这样,控制<
投诉建议

提交

查看更多评论
其他资讯

查看更多

助力企业恢复“战斗状态”:MyMRO我的万物集·固安捷升级开工场景方案

车规MOSFET技术确保功率开关管的可靠性和强电流处理能力

未来十年, 化工企业应如何提高资源效率及减少运营中的碳足迹?

2023年制造业“开门红”,抢滩大湾区市场锁定DMP工博会

2023钢铁展洽会4月全新起航 将在日照触发更多商机